研究業績

原著論文

  1. Kawaguchi T, Ishibashi Y, Matsuzaki M, Yamagata S, and *Tani M. Involvement of lipid-translocating exporter family proteins in determination of myriocin sensitivity in budding yeast. Biochem Biophys Rep. 2024 ;39: 101785
  2. Maekawa Y, Matsui K, Okamoto K, Shimasaki T, Ohtsuka H, Tani M, Ihara K, and *Aiba H. Identification of plb1 mutation that extends longevity via activating Sty1 MAPK in Schizosaccharomyces pombe. Mol Genet Genomics 2024 ;299: 20.
  3. Kono Y, Ishibadhi Y, Fukuda S, Higuchi T, and *Tani M. Simultaneous structural replacement of the sphingoid long-chain base and sterol in budding yeast. FEBS J.2023 ;290: 5605-5627.
  4. Fukuda S, Kono Y, Ishibadhi Y, Tabuchi M, and *Tani M. Impaired biosynthesis of ergosterol confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in a PDR16-dependent manner. Sci Rep. 2023 ;13: 11179.
  5. Koga A, Takayama C, Ishibashi Y, Kono Y, Matsuzaki M, and *Tani M. Loss of tolerance to multiple environmental stresses due to limitation of structural diversity of complex sphingolipids. Mol Biol Cell 2022 ;33: ar105 (USACO 国内研究者論文でも紹介)
  6. Takayama C, Koga A, Skamoto R, Arita N, and *Tani M. Involvement of the mitochondrial retrograde pathway in dihydrosphingosine-induced cytotoxicity in budding yeast. Biochem Biophys Res Commun. 2022 ;605: 63-69.
  7. Ishino Y, Komatsu N, Sakata K, Yoshikawa D, Tani M, Maeda T, Morishige K, Yoshizawa K, Tanaka N, and *Tabuchi M. Regulation of sphingolipid biosynthesis in the endoplasmic reticulum via signals from the plasma membrane in budding yeast. FEBS J. 2022 ;289: 457-472.
  8. Urita A, Ishibashi Y, Kawaguchi R, Yanase Y, and *Tani M. Crosstalk between protein kinase A and the HOG pathway under impaired biosynthesis of complex sphingolipids in budding yeast. FEBS J. 2022 ;289: 766-786.
  9. Kurauchi T, Matsui K, Shimasaki T, Ohtsuka H, Tsubouchi S, Ihara K, Tani M, and *Aiba H. Identification of sur2 mutation affecting the lifespan of fission yeast. FEMS Microbiol Lett. 2021 ;368:fnab070.
  10. Toda T, Urita A, Koga A, Takayama C, and *Tani M. ROS-mediated synthetic growth defect caused by impaired metabolism of sphingolipids and phosphatidylserine in budding yeast. Biosci Biotechnol Biochem. 2020 ;84: 2529-2532.
  11. Otsu M, Toume M, Yamaguchi Y, and *Tani M. Proper regulation of inositolphosphorylceramide levels is required for acquirement of low pH resistance in budding yeast. Sci Rep. 2020 ;10:10792.
  12. Arita N, Sakamoto R, and *Tani M. Mitochondrial reactive oxygen species-mediated cytotoxicity of intracellularly accumulated dihydrosphingosine in the yeast Saccharomyces cerevisiae. FEBS J. 2020 ;287: 3427-3448.
  13. Tanaka S, and *Tani M. Mannosylinositol phosphorylceramides and ergosterol coordinately maintain cell wall integrity in the yeast Saccharomyces cerevisiae. FEBS J. 2018 ;285: 2405-2427. (Editor’s Choice) (Commentaryでも紹介)
  14. Yamaguchi Y, Katsuki Y, Tanaka S, Kawaguchi R, Denda H, Ikeda T, Funato K, and *Tani M. Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast Saccharomyces cerevisiae. Mol Microbiol. 2018 ;107: 363-386.
  15. Katsuki Y, Yamaguchi Y, and *Tani M. Overexpression of PDR16 confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 2018 ;365: fnx255.
  16. Toume M, and *Tani M. Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels. FEBS J. 2016 ;283: 2911-2928.
  17. Miyata N, Miyoshi T, Yamaguchi T, Nakazono T, Tani M, and *Kuge O. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae. Biochem J. 2015 ; 472(3): 319-328.
  18. *Tani M, and Toume M. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase. Microbiology-Sgm 2015 ;161: 2369-2383.
  19. Sakakibara K, Eiyama A, Suzuki SW, Sakoh-Nakatogawa M, Okumura N, Tani M, Hashimoto A, Nagumo S, Kondo-Okamoto N, Kondo-Kakuta C, Asai E, Kirisako H, Nakatogawa H, Kuge O, Takao T, Ohsumi Y, and *Okamoto K. Functional link between Atg32-mediated mitophagy and phospholipid methylation. EMBO J. 2015 ;34(21): 2703-2719.
  20. Ban-Ishihara R, Tomohiro-Takamiya S, Tani M, Baudier J, *Ishihara N, and *Kuge O. COX assembly factor ccdc56 regulates mitochondrial morphology by affecting mitochondrial recruitment of Drp1. FEBS Lett. 2015 ;589(20): 3126-3132.
  21. Watanabe T, Tani M, Ishibashi Y, Endo I, Okino N, and *Ito M. Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in Saccharomyces cerevisiae. Glycobiology. 2015 ;25(10):1079-1089.
  22. Morimoto Y, and *Tani M. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae. Mol Microbiol. 2015 ;95(4): 706-722.
  23. Toume M, and *Tani M. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 2014 ;358(1): 64-71.
  24. *Uemura S, Shishido F, Tani M, Mochizuki T, Abe F, and Inokuchi J. Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in Saccharomyces cerevisiae. J Lipid Res. 2014 ;55: 1343-1356.
  25. *Tani M, and Kuge O. Involvement of Sac1 phosphoinositide phosphatase in metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae. Yeast. 2014 ;31: 145-158.
  26. *Tani M, and Kuge O. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae. Mol Microbiol. 2012 ;86(5): 1262-1280.
  27. Nakase M, Tani M, and *Takegawa K. Expression of budding yeast IPT1 produces mannosyldiinositolphosphorylceramide in fission yeast and inhibits cell growth. Microbiology-Sgm. 2012 ;158: 1219-1228.
  28. *Tani M, and Kuge O. Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2012 ;417(2): 673-678.
  29. Kuroda T, Tani M, Moriguchi A, Tokunaga S, Higuchi T, Kitada S, and *Kuge O. FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis. Mol Microbiol. 2011 ;80(1): 248-265.
  30. Nakagawa T, Tani M, Sueyoshi N, and *Ito M. The mucin box and signal/anchor sequence of rat neutral ceramidase recruit bacterial sphingomyelinase to the plasma membrane. Biosci Biotechnol Biochem. 2011 ;75(5): 987-990.
  31. *Tani M, and Kuge O. Requirement of a specific group of sphingolipid-metabolizing enzyme for growth of yeast Saccharomyces cerevisiae under impaired metabolism of glycerophospholipids. Mol Microbiol. 2010 ;78: 395-413.
  32. *Tani M, and Kuge O. Defect of synthesis of very long-chain fatty acids confers resistance to growth inhibition by inositol phosphorylceramide synthase repression in yeast Saccharomyces cerevisiae. J Biochem. 2010 ;148: 565-571.
  33. Nakase M, Tani M, Morita T, Kitamoto-K H, Kashiwazaki J, Nakamura T, Hosomi A, Tanaka N, and *Takegawa K. Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma membrane proteins in Schizosaccharomyces pombe. J Cell Sci. 2010 ;123: 1578-1587.
  34. *Tani M, and Kuge O. Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes. Biochem Biophys Res Commun. 2009 ;381: 328-332.
  35. Inoue T, Okino N, Kakuta Y, Hijikata A, Okano H, M. Goda H, Tani M, Sueyoshi N, Kambayashi K, Matsumura H, Kai Y, and *Ito M. Mechanistic insights into the hydrolysis and synthesis of ceramide by neutral ceramidase. J Biol Chem. 2009 ;284: 9566-9577.
  36. Hayashi Y, Okino N, Kakuta Y, Shikanai T, Tani M, Narimatsu H, and *Ito M. Klotho-related protein is a novel cytosolic neutral β–glycosylceramidase. J Biol Chem. 2007 ;282: 30889-30900.
  37. Ito K, Anada Y, Tani M, Ikeda M, Sano T, *Kihara A, and Igarashi Y. Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochem Biophys Res Commun.
  38. Tani M, and *Hannun YA. Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett. 2007 ;581: 1323-1328.
  39. Tani M, and *Hannun YA. Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues: Role of palmitoylation in subcellular localization. J Biol Chem. 2007 ;282:10047-10056.
  40. Wu BX, Snook CF, Tani M, Büllesbach EE, and *Hannun YA. Large-scale purification and characterization of recombinant Pseudomonas ceramidase: Regulation by calcium. J Lipid Res. 2007 ;48:600-608.
  41. Tani M, Kihara A, and *Igarashi Y. Rescue of cell growth by sphingosine with disruption of lipid microdomain formation of Saccharomyces cerevisiae deficient in sphingolipid biosynthesis. Biochem J. 2006 ;394:237-242.
  42. Tani M, Igarashi Y, and *Ito M. Involvement of neutral ceramidase in ceramide metabolism at the plasma membrane and in extracellular milieu. J Biol Chem. 2005 ;280:36592-36600.
  43. Tani M, Sano T, Ito M, and *Igarashi Y. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res. 2005 ;46:2458-2467.
  44. Hwang Y, Tani M, Nakagawa T, Okino N, and *Ito M. Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem Biophys Res Commun. 2005 ;331:37-42.
  45. Nakagawa T, Morotomi A, Tani M, Komori H, Sueyoshi N, and *Ito M. C18:3-GM1a induces apoptosis in Neuro2a cells: enzymatic remodeling of fatty acyl chains of glycosphingolipids. J Lipid Res. 2005 ;46:1103-1112.
  46. Yoshimura Y, Tani M, Okino N, Iida H, and *Ito M. Molecular cloning and functional analysis of zebrafish neutral ceramidase. J Biol Chem. 2004 ;279:44012-44022.
  47. Tani M, Okino N, Sueyoshi N, and *Ito M. Conserved amino acid residues in the COOH-terminal tail are indispensable for the correct folding and localization, and enzyme activity of neutral ceramidase. J Biol Chem. 2004 ;279:29351-29358.
  48. Monjusho H, Okino N, Tani M, Maeda M, Yoshida M, and *Ito M. A neutral ceramidase homologue of Dictyostelium discoideum exhibits an acidic pH optimum. Biochem J. 2003 ;376:473-479.
  49. Tani M, Iida H, and *Ito M. O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J Biol Chem. 2003 ;278:10523-10530.
  50. Yoshimura Y, Okino N, Tani M, and *Ito M. Molecular cloning and characterization of a secretory neutral ceramidase from Drosophila melanogaster. J Biochem. 2002 ;132:229-237.
  51. Mitsutake S, Tani M, Okino N, Mori K, Ichinose S, Omori A, Iida H, Nakamura T, and *Ito M. Purification, characterization, molecular cloning, and subcellular distribution of neutral ceramidase of rat kidney. J Biol Chem. 2001 ;276:26249-26259.
  52. Rommiti E, Meacci E, Tani M, Nuti F, Farnararo M, Ito M, and *Bruni P. Neutral/alkaline and acid ceramidase activities are actively released by murine endothelial cells. Biochem Biophys Res Commun. 2000 ;275:746-751.
  53. Tani M, Okino N, Mori K, Tanigawa T, Izu H, and *Ito M. Molecular cloning of the full-length cDNA encoding mouse neutral ceramidase. J Biol Chem. 2000 ;275:11229-11234.
  54. Tani M, Okino N, Mitsutake S, and *Ito M. Purification and characterization of a neutral ceramidase from mouse liver. J Biol Chem. 2000 ;275:3462-3468.
  55. Nakagawa T, Tani M, Kita K, and *Ito M. Preparation of fluorescence-labeled GM1 and sphingomyelin by the reverse hydrolysis reaction of sphingolipid ceramide N-deacylase as substrates for assay of sphingolipid-degrading enzymes and for detection sphingolipid-binding proteins. J Biochem. 1999 ;126:604-611.
  56. Tani M, Okino N, Mitsutake S, and *Ito M. Specific and sensitive assay for alkaline and neutral ceramidases involving C12-NBD-ceramide. J Biochem. 1999 ;125:746-749.
  57. Tani M, Kita K, Komori H, Nakagawa T, and *Ito M. Enzymatic synthesis of omega-amino-ceramide: Preparation of a sensitive fluorescent substrate for ceramidase. Anal Biochem. 1998 ;263:183-188.
  58. Okino N, Tani M, Imayama S, and *Ito M. Purification and characterization of a novel ceramidase from Pseudomonas aeruginosa. J Biol Chem. 1998 ;273:14368-14373.

総説、著書

  1. *Tani M. Biological importance of complex sphingolipids and their structural diversity in budding yeast Saccharomyces cerevisiae. Int J Mol Sci, 2024, 25, 12422
  2. *谷 元洋、スフィンゴ脂質の代謝異常リスクに対する生存戦略、細胞 2024
  3. *谷 元洋、真核微生物におけるセラミドと環境適応との連関性、生化学 2024 ;96:521-530
  4. *谷 元洋、北から南から、生化学 2024 ;96:605-606
  5. *谷 元洋、出芽酵母のスフィンゴ脂質破綻に対する耐性機構を利用したセラミド生産の基盤技術、微生物を活用した有用物質の製造技術 ㈱シーエムシー出版 2023 ;223-229
  6. *谷 元洋、複合スフィンゴ脂質破綻から細胞を守る救済機構、Medical Science Digest 2022 ;48:29-31
  7. Tani M, Komori H, and *Ito M. Metabolic labeling of sphingolipids、Glycoscience Protocols (GlycoPODv2), 2021.
  8. 谷 元洋、石橋 洋平、渡辺 昂、*伊東 信、真核単細胞生物のセラミド関連脂質、「セラミド -基礎と応用-」第二版  ㈱食品化学新聞社, pp91-98. 2019
  9. *Tani M, and Funato K. Protection mechanisms against aberrant metabolism of sphingolipids in budding yeast. Curr Genet, 2018 ;64:1021-1028.
  10. *Tani M, and Ito M. Neutral Ceramidase. Encyclopedia of Signaling Molecules, 2nd Edition (Sangdun Choi., ed), 2018, 3450-3457, Springer
  11. *谷 元洋、酵母における複合スフィンゴ脂質の構造機能相関、Trends Glycosci Glycotech. 2016 ;28:J107-J114.
  12. *Tani M. Structure-function relationship of complex sphingolipids in yeast. Trends Glycosci Glycotech. 2016 ;28:E109-E116.
  13. *Ito M, *Okino N, and *Tani M. New insights into the structure, reaction mechanism, and biological functions of neutral ceramidase. Biochim Biophys Acta. 2014 ;1841(5):682-691.
  14. *谷 元洋、スフィンゴ脂質シグナリング分子の代謝マシナリー、生化学 2011 ;83(7):623-627.
  15. Bielawski J, Tani M, and *Hannun YA. Mass spectrometry methods for the analysis of bioactive sphingolipids: A high-performance liquid chromatography/tandem mass spectrometry approach. Lipid-mediated Signaling (Eric J. Murphy., ed), 2010, pp177-197
  16. 沖野 望、谷 元洋、光武 進、吉村 征浩、合田初美、*伊東 信、構造から読み解く中性セラミダーゼの触媒機構,存在様式及び生理機能、細胞 2009 ;41(5):182-185.
  17. Tani M, Ito M, and *Igarashi Y. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal. 2007 ;19:229-237.
  18. Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, and *Hannun YA. The extended family of neutral sphingomyelinases. Biochemistry. 2006 ;45:11247-11256.
  19. *Ito M, Tani M, and Yoshimura Y. Neutral Ceramidase as an Integral Modulator for the Generation of S1P and S1P-Mediated Signaling. Sphingolipid Biology (Hirabayashi, Y., ed.), 2006, pp183-196.
  20. 谷 元洋、中川 哲人、*伊東 信、O型糖鎖付加による可溶性タンパク質から膜結合型への変換、バイオサイエンスとインダストリー 2005 ;63:103-104.
  21. *伊東 信、谷 元洋、中川哲人、翻訳後O-グリカン修飾による中性セラミダーゼの形質膜II型タンパク質へのリクルート:可溶型タンパク質を形質膜タンパク質に変換する新しい技術、蛋白質 核酸 酵素 2004 ;48:1171-1178.
  22. *Ito M, Okino N, Tani M, Mitsutake S, Kita, K. Molecular evolution of neutral ceramidase : From bacteria to mammals. Ceramide Signaling. (Futerman, A. H., ed.), 2003, pp41-48.
  23. *伊東 信、沖野 望、谷 元洋、光武 進、森 薫、中性セラミダーゼの分子進化:病原因子とシグナリング分子、蛋白質 核酸 酵素 2002 ;47:455-460.
  24. *Ito M, Mitsutake S, Tani M, and Kita K. Enzymatic synthesis of 14C-ceramide, 14C-glycosphingolipids and omega-aminoceramide. Methods Enzymol. 1999 ;311:682-689.