PUBLICATION: Yamamoto YY
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-40154169-1']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
Original article Review etc Japanese article Patent
Original articles ( ! favorite, $ F1000 BIOLOGY selected, # >100 citations)
76.
Requirement of two simultaneous environmental signals for activation of Arabidopsis ELIP2 promoter in response to high light, cold, and UV-B stresses.
Ezeh SO, Hayami N, Mitai K, Kodama W, Iuchi S, Yamamoto YY (2024) Plant Signaling Behavior 19:e2389496.
https://doi.org/10.1080/15592324.2024.2389496
75.
Cytosolic heme catabolism by alternative localization of heme oxygenase 1 in plant cells.
Chen Y, Nishimura K, Tokizawa M, Yamamoto YY, Oka Y, Matsushita T, Hanada K, Shirai K, Mano S, Shimizu T, Masuda T (2024) Plant Physiol 195: 2937-2951.
https://doi.org/10.1093/plphys/kiae288
74.
STOP1-regulated SMALL AUXIN UP RNA55 (SAUR55) is involved in proton/malate co-secretion for Al tolerance in Arabidopsis.
Agrahari RK, Kobayashi Y, Enomoto T, Miyachi T, Fujita M, Iuchi S, Kobayashi M, Yamamoto YY, Koyama H (2024) Plant Direct 8: e557.
https://doi.org/10.1002/pld3.557
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
73.
The transcription factors, STOP1 and TCP20, are required for root system architecture alterations in response to nitrate deficiency.
Tokizawa M, Enomoto T, Chandnani R, Mora-Macías J, Burbridge C, Armenta-Medina A, Kobayashi Y, Yamamoto YY, Koyama H, Kochian LV (2023) Proc Natl Acad Sci USA 120: e2300446120.
https://doi.org/10.1073/pnas.2300446120
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
72. !
Sequence-based evaluation of promoter context for prediction of transcriptional start sites in Arabidopsis and rice.
Hiratsuka T, Makita Y, Yamamoto YY. (2022) Sci Rep12: 6976.
https://doi.org/10.1038/s41598-022-11169-w
tools at Github
71.
Mechanosensory trichome cells evoke a mechanical stimuli-induced immune response in Arabidopsis thaliana.
Matsumura M, Nomoto M, Itaya T, Aratani Y, Iwamoto M, Matsuura T, Hayashi Y, Mori T, Skelly M, Yamamoto YY, Kinoshita T, Mori I, Suzuki T, Betsuyaku S, Spoel S, Toyota M, Tada Y. (2022) Nat Commun 13:1216.
https://doi.org/10.1038/s41467-022-28813-8
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
70.
Suppression of MYC transcription activators by the immune cofactor NPR1 fine tunes plant immune responses.
Nomoto M, Skelly MJ, Itaya T, Suzuki T, Matsushita T, Tokizawa M, Kuwata K, Mori H,
Yamamoto YY, Higashiyama T, Tsukagoshi H, Shoel SH, Tada Y. (2021) Cell Rep 37: 110125.
https://doi.org/10.1016/j.celrep.2021.110125
69.
Expression GWAS of PGIP1 identifies STOP1-dependent and -independent regulation of PGIP1 in aluminum stress signaling in Arabidopsis.
Agrahari RK, Enooto T, Ito H, Nakano Y, Yanase E, Watanabe T, Sadhukhan A, Iuchi S, Kobayashi M, Panda SK, Yamamoto YY, Koyama H, Kobayashi H. (2021) Front Plant Sci 12: 774687.
https://doi.org/10.3389/fpls.2021.774687
68. !
Cryptic promoter activation occurs by at least two different mechanisms in the Arabidopsis genome.
Kudo H, Matsuo M, Satoh S, Hata T, Hachisu R, Nakamura M, Yamamoto YY, Kimura H, Matsui M, Obokata J. (2021) Plant J 108: 29-39.
67.
Efficient Agrobacterium tumefaciens-mediated stable genetic transformation of green microalgae, Chlorella sorokiniana.
Sharma PK, Gould VV, Yamamoto Y, Sahoo L. (2021) 3 Biotech 11: 196.
https://doi.org/10.1007/s13205-021-02750-7
66.
High affinity promoter binding of STOP1 is essential for the early aluminum-inducible expression of novel Al resistance genes GDH1 and GDH2 in Arabidopsis.
Tokizawa M, Enomoto T, Ito H, Wu L, Kobayashi Y, Mora-Macias J, Armenta-Medina D, Iuchi S, Kobayashi M, Nomoto M, Tada Y, Fujita M, Shinozaki K, Yamamoto YY, Kochian LV, Koyama H. (2021) J Exp Bot 72: 2769-2789.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
65.
Genome-wide association study and genomic prediction elucidate the distinct genetic architecture of aluminum and proton tolerance in Arabidopsis thaliana.
Nakano Y, Kusunoki K, Hoekenga OA, Tanaka K, Iuchi S, Sakata Y, Kobayashi M, Yamamoto YY, Koyama H, Kobayashi Y. (2020) Front Plant Sci 11: 405.
64.
Cytosolic GLUTAMINE SYNTHETASE 1;1 modulates metabolism and chloroplast development in roots. Kusano M, Fukushima A, Tabuchi-Kobayashi M, Funayama K, Kojima S, Maruyama K, Yamamoto YY, Nishizawa T, Kobayashi M, Wakazaki M, Sato M, Toyooka K, Osanai-Kondo K, Utsumi Y, Seki M, Fukai C, Saito K, Yamaya T. (2020) Plant Physiol 182: 1894-1909.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
63.
Sensitive To Proton Rhizotoxicity1 regulates salt and drought tolerance of Arabidopsis thaliana through transcriptional regulation of CIPK23.
Sadhukhan A, Enomoto T, Kobayashi Y, Watanabe T, Iuchi S, Kobayashi M, Sahoo L, Yamamoto YY, Koyama, H. (2019) Plant Cell Physiol 60: 2113-2126.
62. !
Transcriptome analysis of the H2O2 response in Arabidopsis and partial identification of the transcriptional regulatory network.
Hieno A, Naznin HA, Hasegawa-Inaba K, Yokogawa T, Hayami N, Nomoto M, Tada Y, Yokogawa T, Higuchi M, Hanada K, Matui M, Hirayama T, Kusunoki K, Koyama H, Mitsuda N, Yamamoto YY. (2019) Plant Physiol 180: 1629-1646.
61.
SnRK1 kinase and the NAC transcription factor SOG1 are components of a novel signaling pathway mediating the low energy response triggered by depleted amounts of ATP.
Hamasaki H, Kurihara Y, Kuromori T, Kusano H, Nagata N, Yamamoto YY, Shimada H, Matsui M. (2019) Front Plant Sci 10: Article 503.
60.
Characterization of NtSTOP1-regulating genes in tobacco under aluminum stress.
Ito H, Kobayashi Y, Yamamoto YY, Koyama H. (2019) Soil Sci Plant Nutr 65: 251-258.
doi: 10.1080/00380768.2019.1603064
59.
STOP1 regulates expression of HSFA2 and GDHs critical for low-oxygen tolerance in Arabidopsis.
Enomoto T, Tokizawa M, Ito H, Iuchi S, Kobayashi M, Yamamoto YY, Kobayashi Y, Koyama H. (2019) J Exp Bot 70: 3297-3311.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
58. # <OUTSTANDING PAPER AWARD by TPJ in 2018>
Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis.
Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, Makita Y, Matsui M, Yoshiyama OK, Sakamoto T, Kurata T, Takahashi N, Umeda M. (2018) Plant J 94: 439-453.
57.
Characterization of CcSTOP1, a C2H2 type transcription factor regulates Al tolerance genes in pigeonpea.
Daspute AA, Kobayashi Y, Panda SK, Fakrudin B, Kobayashi Y, Tokizawa M, Iuchi S, Choudhary A, Yamamoto YY, Koyama H. (2018) Planta 247: 201-214.
doi: 10.1007/s00425-017-2777-6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
56. ! $ # F1000 BIOLOGY
Light control of protein localization through phytochrome-mediated alternative promoter selection.
Ushijima T, Hanada K, Gotoh E, Yamori W, Kodama Y, Tanaka H, Kusano M, Fukushima A, Tokizawa M, Yamamoto YY, Tada Y, Suzuki Y, Matsushita T. (2017) Cell 171: 1316-1325.
doi: 10.1016/j.cell.2017.10.018
55.
Prediction of direct targets of Arabidopsis RRTF1, a H2O2 responsive AP2/ERF transcription factor which mediates multiple stress signals.
Hieno A, Matsuo M, Oelmüller R, Yamamoto YY. (2017) Endocytobiosis Cell Res 28: 9-13.
54. !
Identification of Arabidopsis genic and non-genic promoters by pair-end sequencing of TSS tags.
Tokizawa M, Kusunoki K, Koyama H, Kurotani A, Sakurai T, Suzuki Y, Kurata T, Yamamoto YY. Plant J 90: 587-605.
tools at Github
53. !
Prediction of bipartite transcriptional regulatory elements using transcriptome data of Arabidopsis.
Yamamoto YY, Ichida H, Hieno A, Obata D, Tokizawa M, Nomoto M, Tada Y, Kusunoki K, Koyama H, Hayami N. (2017) DNA Res 24: 271-278.
52.
Design of a synthetic promoter involved in the heat-induced transcriptional pathway in Arabidopsis, soybean, rice, and maize.
Maruyama K, Ogata T, Kanamori N, Yoshiwara K, Goto S, Yamamoto YY, TokoroY, Noda C, Takaki Y, Urawa N, Iuchi S, Urano K, Sakurai T, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K. (2017) Plant J 89: 671-681.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
51.
Possible involvement of MYB44-mediated stomatal regulation in induced systemic resistance by Penicillium simplicissimum GP17-2 in Arabidopsis.
Hieno A, Naznin HA, Hyakumachi M, Higuchi M, Matsui M, Yamamoto YY. (2016) Microbes Environ 31: 154-159.
50.
Specific detection of Type 1 and Type 2 isolates of Pyrenochaeta lycopersici by loop-mediated isothermal amplification reaction.
Hieno A, Naznin HA, Suga H, Yamamoto YY, Hyakumachi M. (2016) Acta Agri Scand, Sect B 66: 353-358.
doi: 10.1080/09064710.2015.1120341
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
49. !
The Response of Arabidopsis ELIP2 to UV-B, high light, and cold stress are regulated by a transcriptional regulatory unit composed of two elements.
Hayami N#, Sakai Y#, Saito T, Kimura M, Tokizawa M, Nomoto M, Tada Y, Iuchi S, Yamamoto YY (2015) Plant Physiol 169: 840-855.
48. #
High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots.
Matsuo M, Johnson JM, Hieno A, Tokizawa M, Nomoto M, Tada Y, Godfrey R, Obokata J, Sherameti I, Yamamoto YY, Böhmer FD, Oelmüller R (2015) Mol Plant 8: 1253-1273.
doi: 10.1016/j.molp.2015.03.011
47. #
STOP1, CAMTA2 and other transcription factors are involved in aluminum-inducible AtALMT1 expression.
Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY*, Koyama H* (2015) Plant Physiol 167: 991-1003.
46.
A stable and efficient nuclear transformation system for the diatom Chaetoceros gracillis.
Ifuku K, Yan D, Miyahara M, Inoue-Kashino N, Yamamoto YY, Kashino Y (2015) Photosynth Res 123: 203-211.
doi: 10.1007/s11120-014-0048-y
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
45. !
Next-generation sequencing of genomic DNA fragments bound to a transcription factor in vitro reveals its regulatory potential.
Kurihara Y, Makita Y, Kawashima M, Hamasaki H, Yamamoto YY, Matsui M (2014) Genes 5: 1115-1131.
44.
VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought risistance in transgenic Arabidopsis
Sadhukhan A, Kobayashi Y, Kobayashi Y, Tokizawa M, Yamamoto YY, Iuchi S, Koyama H, Panda SK, Sahoo L (2014) Planta 240: 645-664.
doi: 10.1007/s00425-014-2111-5
43. !
ppdb: Plant Promoter Database ver 3.0
Hieno A, Naznin HA, Hyakumachi M, Sakurai T, Tokizawa M, Koyama H, Sato N, Nishiyama T, Hasebe M, Zimmer AD, Dang D, Reski R, Rensing S, Obokata J, Yamamoto YY (2014) Nucleic Acids Res 42: D1188-1192.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
42.
Analysis of environmental stress in plants with the aid of marker genes for H2O2 responses
Hieno A, Naznin HA, Sawaki K, Koyama H, Sakai Y, Ishino H, Hyakumachi M, Yamamoto YY (2013) Methods Enzymol 527: 221-237.
doi: 10.1016/B978-0-12-405882-8.00014-X
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
41. ! ###
Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice and soybean
Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshikawa K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) DNA Res 19, 37-49.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
40.
Characteristics of core promoter types with respect to gene structure and expression in Arabidopsis thaliana
Yamamoto YY*, Yoshioka Y, Hyakumachi M, and Obokata J (2011) DNA Res (*corresponding author), 18, 333-342.
Supplemental file (RARf tables used in the article)
39. !
Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data
Yamamoto YY*, Yoshioka Y, Hyakumachi M, Maruyama K, Yamaguchi-Shinozaki K, Tokizawa M, Koyama H (2011) BMC Plant Biol 11, 39. (*corresponding author)
38.
A common sequence motif involved in selection of transcription start sites of Arabidopsis and budding yeast tRNA genes
Yukawa Y, Dieci G, Alzapiedi M, Hiraga A, Hirai K, Yamamoto YY, Sugiura M. (2011) Genomics 97, 166-172.
doi: 10.1016/j.ygeno.2010.12.001
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
37. COVERE ARTICLE
Identification of photosynthetic sacoglossans from Japan
Yamamoto YY, Yusa Y, Yamamoto S, Hirano Y, Hirano Y, Motomura T, Tanemura T, Obokata J. (2009) Endocytobiosis Cell Res 19, 112-119.
36. ! $ # F1000 BIOLOGY
Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis
Yamamoto YY, Yoshitsugu T, Sakurai T, Seki M, Shinozaki K, Obokata J.(2009) Plant J 60: 350-362.
doi: 10.1111/j.1365-313X.2009.03958.x
35.
Live imaging of chloroplast FtsZ1 filaments, rings, spirals, and motile dot structures in the AtMinE1 mutant and overexpressor of Arabidopsis thaliana
Fujiwara M, Sekine K, Yamamoto YY, Abe, Sato N, Itoh R. (2009) Plant Cell Physiol 50, 1116-1126.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
34. $ ##### ##### ##### # F1000 BIOLOGY
Widespread translational inhibition by plant miRNAs and siRNAs
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. (2008) Science 320, 1185-1190.
33.
LET-dependent effects of heavy-ion beam irradiation in Arabidopsis thaliana
Kazama Y, Saito H, Yamamoto YY, Hayashi Y, Ichida H, Ryuto H, Fukunishi N, Abe T. (2008) Plant Biotech 25, 113-117.
doi: 10.5511/plantbiotechnology.25.113
32. !
ppdb, a plant promoter database
Yamamoto YY, Obokata J. (2008) Nucleic Acids Res 36, D977-D981.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
31. ! #
Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis
Yamamoto YY*, Ichida H, Abe T, Suzuki Y, Sugano S, Obokata J. Nucleic Acids Res (2007)
35, 6219-6226. (*corresponding author)
30. ! $ ## F1000 BIOLOGY
Identification of plant promoter constituents by analysis of local distribution of short sequences
Yamamoto YY*, Ichida H, Matsui M, Obokata J, Sakurai T, Satou M, Seki M, Shinozaki K, Abe T (2007) BMC Genomics 8:67. (*corresponding author)
PubMed Journal Site, pdf, Supplemental data (TableS1, S2, S3, S4, S5, FigS1) software
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
29.
In situ visible markers of Arabidopsis for radiation biology
Yamamoto YY, Saito M, Yoshida S, Abe T (2006) RIKEN Accel Prog Rep 39, 135.
28.
INCREASED LEVEL OF POLYPLOIDY1, a conserved repressor of CYCLINA2 transcription, controls endoreduplication in Arabidopsis
Yoshizumi T, Tsumoto Y, Takiguchi T, Nagata N, Yamamoto YY, Kawashima M, Ichikawa T, Nakazawa M, Yamamoto N, Matsui M (2006) Plant Cell 18, 2452-2468.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
27.
Chlorophyll-deficient mutants of rice induced by C-ion irradiation
Abe T, Hayashi Y, Saito H, Takehisa H, Miyazawa Y, Yamamoto YY, Ryuto H, Fukunishi N, Sato M, Yoshida S, Kameya T (2005) RIKEN Accel Prog Rep 38, 132.
26.
Effect of heavy-ion beam irradiation on mutation induction in Arabidopsis thaliana (II)
Saito H, Yamamoto YY, Matsuyama T, Fukunishi N, Ryuto H, Abe T, Yoshida S (2005) RIKEN Accel Prog Rep 38, 130.
25.
Biological effects of heavy ion beam irradiation on turfgrass
Watanabe K, Suzuki C, Yamamoto YY, Abe T, Yoshida S, Yoneyama K (2005) RIKEN Accel Prog Rep 38, 133.
24.
Establishment of Arabidopsis thaliana lines mutagenized with heavy ion beam irradiation
Yamamoto YY, Saito H, Ryuto H, Fukunishi N, Abe T, Yoshida S (2005) RIKEN Accel Prog Rep 38, 131.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
23. !
Global classification of transcriptional responses to light stress in Arabidopsis thaliana
Yamamoto YY*, Shimada Y, Kimura M, Manabe K, Sekine Y, Matsui M, Ryuto H, Fukunishi N, Abe T, Yoshida S (2004) Endocytobiosis Cell Res 15, 438-452. (*corresponding author)
22.
Characterization of plastid signaling in Arabidopsis with the aid of light stress response
Kimura M, Manabe K, Matsui M, Yamamoto YY* (2004). Endocytobiosis Cell Res 15, 345-349. (*corresponding author)
21.
Effect of heavy-ion beam irradiation on mutation induction in Arabidopsis thaliana
Saito H, Matsuyama T, Yamamoto YY, Abe T, Yoshida S (2004) RIKEN Accel Prog Rep 37, 147.
20.
Isolation of light stress response mutants of Arabidopsis thaliana with the aid of heavy ion beam irradiation
Yamamoto YY, Abe T, Yoshida S (2004) RIKEN Accel Prog Rep 37, 148.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
19. ! #
Functional analysis of isoforms of NADPH:protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana
Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003). Plant Cell Physiol 44, 963-974.
18. ! COVER ARTICLE
Gene trapping of the Arabidopsis genome with a firefly luciferase reporter
Yamamoto YY, Tsuhara Y, Gohda K, Suzuki K, Matsui M. (2003). Plant J 35, 273-283.
doi: 10.1046/j.1365-313X.2003.01797.x
PubMed, pdf with supplemental data
17. !
Analysis of hydrogen peroxide-independent expression of the high light-inducible ELIP2 gene with the aid of the ELIP2 promoter-luciferase fusion
Kimura M, Manabe K, Abe T, Yoshida S, Matsui M, Yamamoto YY*. (2003). Photochem Photobiol 77, 668-674. (*corresponding author)
doi: 10.1562/0031-8655(2003)0770668AOHPEO2.0.CO2
16. ! ##
Identification of Arabidopsis genes regulated by high light stress using cDNA microarray
Kimura M#, Yamamoto YY#, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M. (2003). Photochem Photobiol 77, 226-233. (#equal contribution)
doi: 10.1562/0031-8655(2003)0770226IOAGRB2.0.CO2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
15.
Polyribosome loading of spinach mRNAs for photosystem I subunits is controlled by photosynthetic electron transport: a crucial cis element in the spinach PsaD gene is located in the 5'-untranslated region
Sherameti I, Nakamura M, Yamamoto YY, Pfannschmidt T, Obokata J, Oelmüller R. (2002). Plant J 32, 631-639.
doi: 10.1046/j.1365-313X.2002.01452.x
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14. !
Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways
Kimura M, Yoshizumi T, Manabe T, Yamamoto YY*, Matsui M. (2001). Genes Cells 6, 607-617. (*corresponding author)
doi: 10.1046/j.1365-2443.2001.00446.x
13. !
CIP4, a new COP1 target, is a nuclear-localized positive regulator of Arabidopsis photomorphogenesis
Yamamoto YY, Deng X-W, Matsui M. (2001). Plant Cell 13, 399-411.
PubMed, full text @ PubMedCentral, pdf
12. ###
DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length
Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M. (2001). Plant J 25, 213-221.
doi: 10.1111/j.1365-313X.2001.00957.x
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11.
An Arabidopsis cotyledon-specific albino locus: a possible role in 16S rRNA maturation
Yamamoto YY*, Puente P, Deng X-W. (2000). Plant Cell Physiol 41, 68-76.
PubMed, pdf (*corresponding author)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
10. ! #
Role of COP1 interactive protein in mediating light-regulated gene expression in Arabidopsis
Yamamoto YY, Matsui M, Ang L-H, Deng X-W. (1998). Plant Cell 10, 1083-1094.
PubMed, full text @PubMedCentral, pdf
9.
A new vector set for GAL4-dependent transactivation assay in plants
Yamamoto YY*, Deng X.-W. (1998). Plant Biotech 15, 217-220.(*corresponding author)
doi: 10.5511/plantbiotechnology.15.217
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8. !
Light-responsive elements of the tobacco PSI-D gene are located both upstream and within the transcribed region
Yamamoto YY, Kondo Y, Kato A, Tsuji H, Obokata J. (1997). Plant J 12, 255-265.
doi: 10.1046/j.1365-313X.1997.12020255.x
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7. !
5' leader of a photosystem I gene in Nicotiana sylvestris, psaDb, contains a translational enhancer
Yamamoto YY, Tsuji H, Obokata J. (1995). J Biol Chem 270, 12466-12470.
6.
Early light-response of psaD, psaE and psaH gene families of photosystem I in Nicotiana sylvestris: psaD has an isoform of very quick response
Yamamoto YY, Nakamura M, Kondo Y, Tsuji H, Obokata J. (1995). Plant Cell Physiol 36, 727-732.
doi: 10.1093/oxfordjournals.pcp.a078814
5.
Cloning of a nuclear-encoded photosystem I gene, psaEb, in Nicotiana sylvestris
Kubota T, Yamamoto YY, Obokata J. (1995). Plant Physiol 108, 1297-8.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.
Microheterogeneity of PSI-E subunit of photosystem I in Nicotiana sylvestris
Obokata J, Mikami K, Yamamoto Y, Hayashida N. (1994). Plant Cell Physiol 35, 203-209.
doi: 10.1093/oxfordjournals.pcp.a078585
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3.
Structure and expression of a nuclear gene for the PSI-D subunit of photosystem I in Nicotiana sylvestris
Yamamoto Y, Tsuji H, Obokata J. (1993). Plant Mol Biol 22, 985-994.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2.
Nucleotide sequence of cDNA clones encoding PSI-D2 protein of photosystem I in Nicotiana sylvestris
Yamamoto Y, Tsuji H, Hayashida N, Inoue K, Obokata J. (1991). Plant Mol Biol 17, 1251-1254.
1. !
Formation of chlorophyll-protein complexes during greening. 2. redistribution of chlorophyll among apoproteins
Tanaka A, Yamamoto Y, Tsuji H. (1991). Plant Cell Physiol 32, 195-204.
doi: 10.1093/oxfordjournals.pcp.a078064
1)self assessment :)
Highly Cited Researchers of Gifu University