Establishment of *Arabidopsis thaliana* lines mutagenized by heavy ion beam irradiation

Y. Y. Yamamoto, H. Saito, H. Ryuto, N. Fukunishi, T. Abe, and S. Yoshida

For plant mutagenesis by heavy ion beam irradiation, irradiated samples (M_1) are usually grown for the next generation (M_2) , and phenotypic screening is performed at M₂. The growth step requires a long time (months to years), large space, and considerable labor. Sharing M₂ resources can save such research resources of plant researchers and breeders, thus, it is desirable to establish common M_2 populations, as long as many users are expected. As the first trial, we have decided to prepare an M_2 population of Arabidopsis thaliana. There are several reasons for choosing Arabidopsis. Firstly, it is one of the most commonly used plant species for plant genetics. Secondly, the growth of Arabidopsis does not require a large outdoor space in a field; an *in house* growth facility is sufficient. Thirdly, considering its small genome size, a relatively small population is sufficient for saturated mutagenesis. Fourthly, the most efficient beam conditions for Arabidopsis mutagenesis have already been determined.¹⁾

Consulting our previous report,¹⁾ we irradiated dry seeds of *Arabidopsis thaliana* ecotype Columbia with a Ne¹⁰⁺ beam at a dose of 150 Gy. The irradiated seeds were then grown for self-pollinated seeds. After harvesting, we grew seeds from 9 M₁ plants as one batch. We prepared around 700 M₂ batches, representing 6,000 M₁ plants. Because one M₁ plant contains two germ line cells²⁾, one batch of the prepared M_2 seeds displays 18 independent germ lines. Assuming a heterozygote mutation at M_1 , representation of 5 homozygous siblings at M_2 on average requires 360 seedlings per batch.

There are several long hypocotyl mutant loci that have been identified by extensive genetic studies, and among them, hy1, hy2, and $hy3^{3}$ show significantly long hypocotyls when grown under white light. Examination of the appearance rate of these hy-type mutants in the Ne-beam-irradiated M₂ population, we found 4 independent mutant lines out of 200 M₂ batches (Table 1). This rough estimation suggests that 150 batches corresponding to 3,000 germ lines provide one mutant allele for each locus. According to this estimation, the prepared population of 700 batches would provide 4 to 5 alleles per locus. Further analysis would provide more precise information on the quality of our *Arabidopsis* M₂ population.

References

- H. Saito, T. Matsuyama, Y. Y. Yamamoto, T. Abe, and S. Yoshida: RIKEN Accel. Prog. Rep. 37, 147 (2004).
- G. P. Rédei and C. Koncz: in *Methods in Arabidopsis Research*, edited by C. Koncz, N.-H. Chua, and J. Schell (World Scientific, Singapore, 1992), p.16.
- M. Koornneef, E. Rolff, and C. J. P. Spruitt: Z. Pflanzenphysiol. 100, 147 (1980).

Table 1. Characteristics of the Arabidopsis M₂ population.

 $^{\$1}$ Significantly long hypocotyl phenotype under white light. $^{\$2}$ Identity of the genetic loci is not determined. $^{\$3}hy1$, hy2, and hy3.