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REDOX RESPONSIVE TRANSCRIPTION FACTOR1 

(RRTF1) is an AP2/ERF type transcription factor 

regulating hundreds of stress responsive genes. 

Previous studies revealed that regulation of RRTF1 

expression was involved in various stress responses and 

also ROS homeostasis. In this report, we predict direct 

targets of RRTF1 among genes regulated by RRTF1 

overexpression and also H2O2, using transcriptome data 

of RRTF1 overexpressors with the aid of a reported GCC-

box like binding site from the RAP2.6 promoter. Direct 

targets of RRTF1 included the predicted genes for 

jasmonic acid/ethylene signaling, biotic and abiotic 

stress responses, and growth control via 

brassinosteroid signaling. 
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Introduction 
 
Arabidopsis REDOX RESPONSIVE TRANSCRIPTION 

FACTOR1 (RRTF1) belongs to the group X of ERF family 

(Nakano et al. 2006). This transcription factor was first 

identified as a redox responsive gene whose activation was 

suppressed by 3–(3,4–dichlorophenyl)–1,1–dimethylurea 

(DCMU) (Khandelwal et al. 2008). Subsequent studies 

revealed that expression of RRTF1 was activated by 

jasmonic acid (JA) (Wang et al. 2008) and also by high light 

stress, infection by Altenaria brassicae, and H2O2 (Matsuo et 

al. 2015). 

Studies on upstream factors of RRTF1 expression 

revealed that RRTF1 expression was regulated by WRKY40, 

which targeted at a W box in the RRTF1 promoter (Pandey 

et al. 2010). WRKY40 had functional redundancy with 

WRKY18 and WRKY60 (Xu et al. 2006), and wrky40/wrky18 

double mutants showed enhanced transcriptional activation 

of RRTF1 during infection of powdery mildew 

(Golovinomyces orontii), providing evidence of WRKY18/40 

as negative regulators of RRTF1 (Pandey et al. 2010). 

Downstream events after activation of RRTF1 included 

accumulation of H2O2 and transcriptional activation of more 

than 800 genes, which were identified by analysis of RRTF1 

overexpressors (RRTF1ox) (Matsuo et al. 2015). The former 

event is supposed to have a role in amplification of the H2O2 

signal, which is necessary for long distance signaling. 

Our trials for identification of direct target genes of 

RRTF1 was not easy, because the over 800 genes included 

both direct and indirect targets. After examinations of 6 sites 

in the promoter of the downstream genes, one site in the 

RAP2.6 promoter showed sequence-specific binding to the 

RRTF1 protein in vitro. The identified RRTF1 target site 

contained a GCC-box-like sequence, TGACGGCT. 

In this study, we performed more precise prediction of 

direct targets of RRTF1 based on microarray data of the 

RRTF1ox and of the H2O2 response. Utilization of 

information of the identified RRTF1 binding sequence was 

expected to significantly enhance prediction accuracy. 

 

 

Results and Discussion 
 
A scheme for prediction of direct targets of RRTF1 is shown 

in Figure 1. Microarray data of RRTF1ox (Matsuo et al. 2015) 

was used for promoter prediction. Our prediction method 

used in this study (Yamamoto et al. 2011) detected 

overrepresented octamer sequences in the RRTF1-activated 

promoters over all the promoters in the genome. Positive 

octamers (RAR >3) were searched for 21 H2O2-responsive 

RRTF1 regulated promoters (Venn diagram in Figure 1) and 

then subjected to multiple alignments (Figure 1). The 
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resultant clusters were composed of homologous sequences 

with the binding sequences of RRTF1. The homologous 

sequences as putative direct targets of RRTF1 and the 

corresponding promoters of AT1G10585, IGMT1, VQ12, 

PDF1.2b, AZI1, and TCH4, in addition to RAP2.6, were shown 

in Table 1 and Figure 2. 

VQ12 contains a VQ motif which has binding activity to 

WRKY transcription factors and acts as their regulator 

(Cheng et al. 2012). Potential binding targets of VQ12 were 

WRKY20, WRKY23, and WRKY24 (Dreze et al. 2011). 

Previous study showed that VQ12 is related to COI1-

mediated to JA/ethylene (ET) signaling and acts as a 

negative regulator of basal defense against Botrytis cinerea 

(Wang et al. 2015). WRKY23 is a negative regulator of auxin 

transport and an enhancer of local flavonol production for 

proper root growth and stem cell specification (Grunewald 

et al. 2012, 2013). The functions of WRKY20 and WRKY24 

have not been well studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1: Outline for prediction of direct target sequences of RRTF1. 1. The full Venn diagram shows the number of expressed genes (fold 
change ≧5 for RRTF1 overexpressors (RRTF1ox) and ≧2.5 for H2O2) identified by microarray analyses (Matsuo et al. 2015). 2. The full 
microarray data of RRTF1ox was also used for the prediction of cis-elements (Yamamoto et al. 2011). 3. Predicted octamers (RAR >3) found in 
the 21 promoters were subjected to multiple alignment analyses. Two clusters containing a reported direct target sequence in the RAP2.6 
promoter, TGACGGCT, (Matsuo et al. 2015), and its complementary sequence, TGACGGCT and AGCCGTCA (both of which are shown in bold) 
were selected as putative direct targets of RRTF1. 
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AZI1 functions in defense priming and systemic plant 

immunity (Atkinson et al. 2013; Jung et al. 2009), and also in 

tolerance to salt (Pitzschke et al. 2014) and cold stresses (Xu 

et al. 2011). Because AZI1 gene expression was elevated in 

cat2 plants, accumulation of intracellular H2O2 was 

suggested to up-regulate AZI1 expression. In cat2 sid2 plants 

this activation was not detected, therefore, it was proposed 

that AZI1 activation requirs not only H2O2 but also salicylic 

acid (SA) (Chaouch et al. 2010). 

PDF1.2b is one of the marker genes for JA/ET signaling 

in defense responses (Brown et al. 2003). In a previous 

study, the ROSE7/GCC box was detected as a H2O2-

responsive cis-element in the promoter of PDF1.2b (Wang et 

al. 2013). The ROSE7/GCC box is similar to the 

complementary sequence of the RRTF1 target (Matsuo et al. 

2015). 

INDOLE GLUCOSINOLATE O-METHYLTRANSFERASE1 

(IGMT1) is an enzyme for indole glucosinolate biosynthesis 

which is produced in crucifer plants and required for 

defense against herbivorous insects, pathogens and other 

pests (Pfalz et al. 2011). 

TCH4 has a role in growth regulation. TCH4 encodes a 

xyloglucan endotransglucosylase/hydrolase for 

modification of the cell wall structure in response to touch, 

darkness, cold, heat, and auxin (Iliev et al. 2002; Lee et al. 

2004). The TCH4 is supposed to function in morphological 

modification in response to stress conditions. 

AT1G10585 encodes a bHLH transcription factor, and its 

function is not reported. 

Our results suggest a possible role of RRTF1 as a 

branching point from the H2O2 signal to the JA/ET signaling 

pathway for various stress tolerance responses, systemic 

signaling, indole glucosinolate biosynthesis, and 

morphological modifications through direct activation of the 

identified target genes predicted in this study. 

 
 
 
Table 1: Putative direct target genes of RRTF1. Among 21 genes which were induced by both RRTF1ox and H2O2, these with 
putative direct target octamers in their promoter region -1000 to -1 are shown in Figure 1 and fully predicted RRTF1 target 
sequences are listed here. Position from transcription start site is the first base of each octamer sequence (5’ end of the 
octamer). When the octamers contain GCCG, the complementary sequence of the RRTF1 target in the RAP2.6 promoter is shown 
(“comp”). 

 

AGI Description 
Predicted RRTF1 target 

sequence (5’-3’) 

AT1G10585 bHLH DNA-binding superfamily -790 GAATGCCG comp 

AT1G21100 
IGMT1 (INDOLE GLUCOSINOLATE O-

METHYLTRANSFERASE1) 

-364 

-363 

-133 

-131 

-130 

-129 

-128 

CTGCCGCC 

TGCCGCCA 

TTCAGCCG 

CAGCCGGC 

AGCCGGCA 

GCCGGCAC 

CCGGCACA 

comp 

comp 

comp 

- 

- 

- 

- 

AT1G43160 RAP2.6, AP2/ERF transcription factor -79 TGACGGCT * 

AT2G22880 VQ12, VQ motif-containing protein 

-954 

-953 

-900 

-899 

-896 

AGCCGTCA 

GCCGTCAC 

AGCCGCGG 

GCCGCGGC 

GCGGCTTC 

comp 

comp 

comp 

- 

- 

AT2G26020 PDF1.2b (PLANT DEFENSIN1.2b) 

-256 

-255 

-254 

-253 

-234 

-233 

CCAGCCGC 

CAGCCGCC 

AGCCGCCC 

GCCGCCCA 

AGCAGCCG 

GCAGCCGC 

comp 

comp 

comp 

comp 

comp 

comp 

AT4G12470 AZI1 (AZELAIC ACID INDUCED1) -366 AGCCGTCA comp 

AT5G57560 TCH4 (TOUCH4), xyloglucan endotransglucosylase 
-109 

-107 

ACGCGGCT 

GCGGCTTC 

- 

- 
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Figure 2: Putative direct targets of RRTF1 and their function. Target sequences of RRTF1 in the promoters of downstream genes are shown. 
The target sequences contained either CGGC or GCCG as a core sequence, and those with a CGGC motif are marked by an arrow from left to 
right, while those with a GCCG motif by an arrow from right to left. Bold bases are underlined and indicate a match with TGACGGCT, the RRTF1 
target in the RAP2.6 promoter. 
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