仮想仕事の原理関係
表面力による仮想仕事
\begin{eqnarray*} \int_S \mathbf{T}\cdot \delta \mathbf{u}dS&=&\int_S(t_x\delta u_x+t_y\delta u_y +t_z\delta u_z)dS \\ &=&\int _S\bigl\{(\sigma_{xx}n_x+\sigma_{yx}n_y+\sigma_{zx}n_z)\delta u_x \\ && ~~~~ +(\sigma_{xy}n_x+\sigma_{yy}n_y+\sigma_{zy}n_z)\delta u_y \\ && ~~~~ +(\sigma_{xz}n_x+\sigma_{yz}n_y+\sigma_{zz}n_z)\delta u_z \bigr\}dS\\ &=&\int _S\bigl\{(\sigma_{xx}\delta u_x +\sigma_{xy}\delta u_y +\sigma_{xz}\delta u_z)n_x\\ && ~~~~ + (\sigma_{yx}\delta u_x +\sigma_{yy}\delta u_y +\sigma_{yz}\delta u_z)n_y\\ && ~~~~ + (\sigma_{zx}\delta u_x +\sigma_{zy}\delta u_y +\sigma_{zz}\delta u_z)n_z \bigr\}dS \end{eqnarray*} |
コーシーの関係
\[ T_i=\sigma_{ji}n_j \] |
ガウスの発散定理
\int _V \nabla \cdot \mathbf{A} dV= \int _S \mathbf{A}\cdot \mathbf {n}dS |
\[ \int _V \left( \frac{\partial f_x}{\partial x}+ \frac{\partial f_y}{\partial y}+ \frac{\partial f_z}{\partial z} \right)dV= \int_S(f_xn_x+f_yn_y+f_zn_z)dS \] |
表面力による仮想仕事を変形
\begin{eqnarray*} &&\int_S\bigl\{ (\sigma_{xx}\delta u_x+\sigma_{xy}\delta u_y +\sigma_{xz}\delta u_z)n_x + (\sigma_{yx}\delta u_x+\sigma_{yy}\delta u_y +\sigma_{yz}\delta u_z)n_y \\ &&~~~~~~ +(\sigma_{zx}\delta u_x+\sigma_{zy}\delta u_y +\sigma_{zz}\delta u_z)n_z \bigr\}dS\\ &&=\int_V\bigl\{ \frac{\partial}{\partial x}(\sigma_{xx}\delta u_x+\sigma_{xy}\delta u_y +\sigma_{xz}\delta u_z)+ \frac{\partial}{\partial y}(\sigma_{yx}\delta u_x+\sigma_{yy}\delta u_y +\sigma_{yz}\delta u_z)\\ &&~~~~~~ +\frac{\partial}{\partial z}(\sigma_{zx}\delta u_x+\sigma_{zy}\delta u_y +\sigma_{zz}\delta u_z)\bigr\}dV \\ &=&\int_V \bigl\{ (\frac{\partial\sigma_{xx}}{\partial x}+\frac{\partial\sigma_{yx}}{\partial y}+\frac{\partial\sigma_{zx}}{\partial z})\delta u_x + (\frac{\partial\sigma_{xy}}{\partial x}+\frac{\partial\sigma_{yy}}{\partial y}+\frac{\partial\sigma_{zy}}{\partial z})\delta u_y + (\frac{\partial\sigma_{xz}}{\partial x}+\frac{\partial\sigma_{yz}}{\partial y}+\frac{\partial\sigma_{zz}}{\partial z})\delta u_z \\ &&~~~~~~+\sigma_{xx}\delta \varepsilon_{xx}+\sigma_{yy}\delta \varepsilon_{yy} +\sigma_{zz}\delta \varepsilon_{zz} +\tau_{xy}\delta \gamma_{xy} +\tau_{yz}\delta \gamma_{yz}+ \tau_{zx}\delta \gamma_{zx}\bigr\}dV \end{eqnarray*} |
弾性力学
等方線形弾性体のフックの法則
\varepsilon_{ij}= \frac{1+\nu}{E} \left( \sigma_{ij}-\frac{\nu}{1+\nu}\delta_{ij}\sigma_{kk} \right) |
FEM
三角形一次要素のBマトリックス
\begin{eqnarray*} \{\varepsilon\}&=& \left\{ \begin{array}{c} \varepsilon_x\\ \varepsilon_y\\ \gamma_{xy} \end{array} \right\}= \left\{ \begin{array}{c} \frac{\partial u}{\partial x}\\ \frac{\partial v}{\partial y}\\ \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\\ \end{array} \right\}\\ &=& \left[ \begin{array}{cccccc} \frac{\partial N_i}{\partial x} & 0 & \frac{\partial N_j}{\partial x} & 0 & \frac{\partial N_k}{\partial x} & 0 \\ 0 & \frac{\partial N_i}{\partial y} & 0 & \frac{\partial N_j}{\partial y} & 0 & \frac{\partial N_k}{\partial y} \\ \frac{\partial N_i}{\partial y} & \frac{\partial N_i}{\partial x} & \frac{\partial N_j}{\partial y} & \frac{\partial N_j}{\partial x} & \frac{\partial N_k}{\partial y} & \frac{\partial N_k}{\partial x} \\ \end{array} \right] \left\{ \begin{array}{c} u_i\\ v_i\\ u_j\\ v_j\\ u_k\\ v_k \end{array} \right\}= [B]\left\{ \begin{array}{c} u_i\\ v_i\\ u_j\\ v_j\\ u_k\\ v_k \end{array} \right\} \end{eqnarray*} |
Bマトリックスの成分
\begin{eqnarray*} [B]= \left[ \begin{array}{cccccc} y_j-y_k & 0 & y_k-y_i & 0 & y_i-y_j & 0 \\ 0 & x_k-x_j & 0 & x_i-x_k & 0 & x_j-x_i \\ x_k-x_j & y_j-y_k & x_i-x_k & y_k-y_i & x_j-x_i & y_i-y_j\\ \end{array} \right] \end{eqnarray*} |
局所不安定性解析
原子弾性剛性係数の成分
\renewcommand{\arraystretch}{2} \begin{eqnarray*} \begin{array}{|cccccc|} C_{11}^\alpha+\sigma_{1}^\alpha & C_{12}^\alpha-\displaystyle\frac{\sigma_{1}^\alpha+\sigma_{2}^\alpha}{2} & C_{13}^\alpha-\displaystyle\frac{\sigma_{1}^\alpha+\sigma_{3}^\alpha}{2} & C_{14}^\alpha-\displaystyle\frac{\sigma_{4}^\alpha}{2} & C_{15}^\alpha+\displaystyle\frac{\sigma_{5}^\alpha}{2} & C_{16}^\alpha+\displaystyle\frac{\sigma_{6}^\alpha}{2} \\ & C_{22}^\alpha+\sigma_{2}^\alpha & C_{23}^\alpha-\displaystyle\frac{\sigma_{2}^\alpha+\sigma_{3}^\alpha}{2} & C_{24}^\alpha+\displaystyle\frac{\sigma_{4}^\alpha}{2} & C_{25}^\alpha-\displaystyle\frac{\sigma_{5}^\alpha}{2} & C_{26}^\alpha+\displaystyle\frac{\sigma_{6}^\alpha}{2} \\ & & C_{33}^\alpha+\sigma_{3}^\alpha & C_{34}^\alpha+\displaystyle\frac{\sigma_{4}^\alpha}{2} & C_{35}^\alpha+\displaystyle\frac{\sigma_{5}^\alpha}{2} & C_{36}^\alpha-\displaystyle\frac{\sigma_{6}^\alpha}{2} \\ & & & C_{44}^\alpha+\displaystyle\frac{\sigma_{2}^\alpha+\sigma_{3}^\alpha}{2} & C_{45}^\alpha+\displaystyle\frac{\sigma_{6}^\alpha}{2} & C_{46}^\alpha+\displaystyle\frac{\sigma_{5}^\alpha}{2} \\ & & & & C_{55}^\alpha+\displaystyle\frac{\sigma_{3}^\alpha+\sigma_{1}^\alpha}{2} & C_{56}^\alpha+\displaystyle\frac{\sigma_{4}^\alpha}{2} \\ \mathrm{sym.} & & & & & C_{66}^\alpha+\displaystyle\frac{\sigma_{1}^\alpha+\sigma_{2}^\alpha}{2}\\ \end{array} \end{eqnarray*} |