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Local lattice instability analysis

Original concept: bond-breaking and re-bonding necessarily
happens in inelastic deformation
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Cleavage cracking Slip deformation

Discuss local deformation by “local lattice instability”
in MD simulation
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Example: deformation process of Ni nanospecimen

f Movie: deformation process of four surface from perfect
e crystal to disordered one by slip

left: atom motion

right: colored by “local lattice instability”,
blue is stable, red unstable
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Born’s stability criteria for perfect lattice

A A +0 A A A Discuss crystal stability by the positivity of
Hessian, explicitly counting the interatomic potential
assuming ideal uniform lattices in continuum body

Infinite homogencous body
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Instability analysis by elastic stiffness coefficients
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Stability criteria for whole crystal Local stability at each atom point

(Wang 1993) (Yashiro 2001)

Stress, elastic coefficients, elastic stiffness coefficients

Elastic stiffness can be evaluated with the stress and elastic coefficients
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Stress and elastic coefficients are defined as
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Atomic stress and elastic coefficients in Tersoff potential
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In the Tersoff potential, energy contribution of atom « is expressed as

E* = Z % {Fr(r*?) + 6P fa(ro?)}
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Thus we can define atomic stress and atomic elastic coefficients as
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On the derivatives for three body bond order term, please see

Yashiro, Com. Mat. Sci. 112 (2016) 120-127

(for 1988 Tersoff potential, however, 1989 Tersoff is rather simple so that
| would like to recommend the later version)

Atomic elastic stiffness and eigenvalue analysis

Taking the Voigt symmetry into account, we represents the atomic elastic
stiffness with 6x6 matrix Byj instead of 4th tensor Bfj.
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Negative eigenvalue implies the existence of unstable deformation path
Acf = B{;Asj =n"Ag;

We evaluate all the eigenvalue and eigenvector at each atom point
by using LAPACK math library

Tensile simulation of center crack in Si
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Simulation conditions
Potential function: Tersoff crack width: 0.3Lx
Periodic boundary condition 10000fs initial relaxation
Tempterature: 300K Number of atoms: about 120,000

Tensile speed: gy = 1.0 x 1075/f5

Stress strain curves and movie of crack propagation
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[001)0010) erack, =031, T=300K [0011110)crack, 24031, T=300K [H1210111) erack, 20031, T=300K
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Red atom: negative 1st eigenvalue T BEATY

Results in bce-Fe ([001](110) crack)
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Change the cell size
(different crack array)

Different max. strain
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Magnified view of the crack tip
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Movies are made with position data at every 1000fs
Unstable domain is relatively small even at the crack propagation




Change in the minimum eigenvalue and crack length
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1001)(010) crack. 2w=03L, T=300K 1001)(110) crack. 2v=03L,. T=300K [112)(111)crack, 2003, T-300K
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Minimum Ist cigenvalue, 7", GPa

Crack length Crack length 04F  Crack length
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The minimum eigenvalue is selected from all the atom for each time step
The eigenvalue and crack length are evaluated at every 1000fs position
data (A¢,,=0.001)

» surface “negative” eigenvalues are almost zero

Detail change just at the unstable propagation
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The eigenvalue and crack length are evaluated at every 10fs position
data (Ae,,=0.00001)

» large negative eigenvalue emerges before crack propagation

Position of large negative eigenvalue and eigenvector
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(a) [001](010) crack, £,,=0.10992 (b) [001](110) crack, £,=0.12447  (c) [112)(111) crack, £,=0.09696

Warm color atoms have large negative eigenvalue
They are symmetrically located at crack tip

Hcomponents of eigenvector
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[001](010)  -0.56 0.12 0.41 -0.05 0.13

[001](110) -0.50 0.40 0.40 -0.03 0.25
(2ja1) 030 -0.55 -03s -0.09 -0.33

The largest components suggest
[001](010) crack is mode I (yy), [001](110) mode 11 (xx)
and [112](111) mode 1l (zx)

High stable area at crack tip

Determinant of 6x6 matrix of
atomic elastic stiffness

det B3 (= My @ya®)a(0a()()

(Normalized by that in perfect
lattice, i.e. det B = 1 in bulk)

Cold color: high stable atom

It is never seen in Fe, and
may prevent dislocation
emission and give brittle
character to Si?

(c) [1{2](111) crack. s,,=0.09696

Recent application: Ideal crack in Mg

[10T0)(1122)erack
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L=320m £=3mm
(a) periodic cell in Cartesian coordinate (b) periodic cell in non-Cartesian coordinate
Simulation conditions

Potential function: EAM (Liu, 1996)
Periodic boundary condition Ideal crack: virtual force shield
Tempterature: 0.1K Number of atoms: about 120,000~130,000
Tensile speed: Acy, = 1.0 x 1077 /fs

crack width: 0.1Lx, 0.3Lx, 0.5Lx
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Results in the basal plane crack
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Applied strain, &,

Crack opening: no unstable atom
((0001) surface is stable)
Dislocation emission and crack propagation:
burst of unstable atoms
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Early stage in the crack tip instability (basal plane crack, 0.1Lx)
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Dislocation emission process (basal plane crack, 0.1Lx)
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Crack propagation process (basal plane crack, 0.3Lx)
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[1010}(0001), 2a=0.3L,

Normalized crack length, 2a/L,
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Eigenvector for crack propagation
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Normalized position, ¥/L,

negative 1st eigenvalue

Normalized position, ¥/L,

negative 2nd eigenvalue
Crack instability: large normal component ¢, and ¢, in the 2nd eigenvector
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Eigenvector for dislocation emission Results in the prismatic plane crack
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Dislocation emission rely on the unstable area?(loop like area) Yo wEA
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Results in the pyramidal plane crack Summary
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[1010)(10T1)erack [1010)(1011)erack, 2a=0.3L,

Atomic elastic stiffness (AES) could be a powerful tool, such

| z 'f‘im"* F' as central symmetry parameter, to find out local deformation
The eigenvalue of the AES always shows preceding instability
; i before local deformation
T : M The normalized determinant of the AES also reveals that

Applied s, 5, Applied s, 5,

highly stable zone emerges at the crack tip in Silicon.
It is never seen in metallic system.
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