
Improved Local Horizontal and Vertical Common Subexpression

Elimination Method for Constant Multiple Multiplication

Yasuhiro Takahashi and Toshikazu Sekine Michio Yokoyama

Department of Electrical and Electronic Engineering Graduate School of Science and Engineering
Gifu University Yamagata University

1-1 Yanagido, Gifu-shi, 501-1193, Japan 4-3-16 Jonan, Yonezawa-shi, 992-8510, Japan
{yasut, sekine}@gifu-u.ac.jp yoko@yz.yamagata-u.ac.jp

Abstract— The common subexpression elimination

(CSE) techniques address the issue of minimizing the

number of adders needed to implement the multiple

constant multiplication (MCM) blocks. In this paper,

we propose a new CSE method using a combining hor-

izontal and vertical technique. The proposed method

searches firstly the frequency of higher order horizon-

tal common subexpression, i.e., 3–5 bits, and then

searches vertical. Our simulation results show that

our method offers a good tradeoff between the imple-

mentation cost and the synthesis run-time in compar-

ison with conventional methods.

I. Introduction

In the digital signal processing (DSP) algorithms, many
fixed transforms (e.g., FIR/IIR filter with fixed coeffi-
cients, DCT, DFT, etc) do not require the flexibility of a
general-purpose multiplier as the multiplicand has a lim-
ited number of values. From this reason, it is attractive
to carry out the multiplication by using shifts and adds.
The shifts can be realized by using hard-wired shifters
and hence they are essentially free. Furthermore, we can
reduce the adder area by using the common subexpres-
sion elimination (CSE) techniques. The CSE tackles the
multiple constant multiplication (MCM) problem [1, 2]
by minimizing the number of additions through extract-
ing common parts among the constants represented in
canonic signed digit (CSD) [3–11]. There are three dif-
ferent kinds of common subexpressions (CSs): horizontal,
vertical and oblique. Due to the computational complex-
ity and the fact that linear phase FIR filters are symmet-
rical, the search for redundant computations in multiplier
block is normally confined to horizontal CSs. Recently,
Jang et al. [5] proposed a method of further reducing the
number of adders by using vertical CSE, and Vinod et
al. [6] proposed a combining horizontal and vertical CSE.
However, the structures for these techniques are designed
without any consideration of the number of registers (i.e.
time delay elements). The gate number ratio of adders to
registers is 1 : 0.6–0.8 [12]; therefore, in case of structure
with many registers, the implementation cost cannot be

reduced. In our previous paper [7] we have presented an
improved horizontal and vertical CSE which is able to re-
duce the number of adders and registers, but the previous
proposed method has needed a long simulation run-time
in order to search all horizontal CS patterns.

In this paper, we propose a new CSE method using
a combining horizontal and vertical technique in realiz-
ing multiple constant multipliers (MCM). The proposed
method is firstly the frequency of higher order horizontal
CS, i.e., 3–5 bits, and then searches vertical. The rest
of this paper is organized in four sections. Section II de-
scribes the definition of the MCM. Section III provides
a brief review of CSE approaches and then is presented
a new CSE method. Section IV presents the synthesis
results of the 53 MCM design examples. Finally, conclu-
sions are drawn in section V.

II. Multiple Constant Multiplication

A common feature of many digital signal processing
algorithms is that they involve computations of the form

Yi = aijXi (i = 0, 1, · · · , N −1; j = 0, 1, · · · ,M −1), (1)

where Xi and Yi are input and output variable vectors,
respectively. Also, aij is a set of constant coefficients, N

is the number of coefficients and M is the word length.
One typical example is the transposed form FIR filter that
one input data is multiplied with the filter coefficients, as
shown in Fig. 1. In this paper, we perform multiple mul-
tiplications in Equation (1) using the registers and the
adders/subtracters in order to reduce the area. Then the
problem of reducing the costs is stated as the problem
of minimizing the weighted sum of the numbers of the
registers and adders/subtracters which are needed to per-
form all of the multiplications. That is, the objective cost
function (CF) to be minimized is written as:

CF = βN reg + γNas (β > 0, γ > 0), (2)

where N reg and Nas are the number of registers and adders
/subtracters, respectively, β and γ are weights.



input X

Y0 Y1 Y2 YN-1

a0 a1 a2 aN-1

MCM

Fig. 1. Block diagram of MCM circuit.

The above is called the multiple constant multiplication
(MCM) problem. But the MCM problem is very complex
that it is believed to be NP-hard. Hence, we have to find
heuristics referred to as the CSE.

III. Common Subexpression Elimination

Method

A. Review

Common subexpression elimination (CSE) proposed to
tackle the MCM problem minimizes the number of ad-
ditions by extracting the common parts among the con-
structs represented in binary form [1,2]. In the past, some
new techniques for CSE, oblique (i.e. Hartley) [3], verti-
cal (Jang et al.) [5], and combining horizontal and vertical
(Vinod et al.) CSE technique [6] have been proposed a
powerful solution to reduce the complexity in MCM, using
the CSD representation.

Figure 2 illustrates the three different (horizontal, ver-
tical and oblique) types of CSs where 1 denotes −1. The
shared cells in this figure indicate contentions, where two
or more CSs share the same nonzero digit. A contention
implies a potential inhibition of sharing some CSs. The
notations shown in Fig. 3 are used to express the three dif-
ferent types of subexpression. In this figure, x[−i] denotes
the value of x after i sample delays and << j stands for
left shift of j digits. i and j can be deemed as the height
and length of the CSs. We so assume that shift opera-
tions are essentially free, they can be hard-wired. How-

1 0

0 1

0 1

1 0

1

0 1 0 1 0 1

0 1 0 0 1

0 0 1 0 0 1

0 1 0 0 1 0

: Horizontal common-subexpression
: Vertical common-subexpression
: Oblique common-subexpression

Fig. 2. Common subexpressions in the constant coefficients.

0

1

1

0

D <<1

0

1

1

D

D

1 0 0 1
<<3

<< : Hard-wired shifter : Delay registerD

x

x

x

x3 = x + (x << 3)

x2 = x + x[−2]

x1 = (x << 1) − x[−1]

j

i

Fig. 3. Notations and circuit configurations of common
subexpressions

ever, the structures for vertical and oblique techniques are
designed without any consideration of the number of regis-
ters. Vinod et al.’s CSE technique [6] has used combining
horizontal and vertical CS to reduce the number of adders.
However, the structures generated by using vertical CSE
technique are still designed without any consideration of
the number of registers. Therefore, if the structure of
MCM contains many registers, the implementation cost
cannot be reduced. Our improved horizontal and vertical
CSE technique (Takahashi et al.) [7] has been proposed an
efficient way to find the correct bit-patterns for horizon-
tal and vertical CSEs. The proposed CSE has stated as
the problem of minimizing the numbers of the delay and
adders/subtracter blocks which are needed to perform all
of the multiplications. Using Takahashi et al.’s method,
the MCM area of the FIR filters has been reduced by
an average of 20%. However, its CSE technique needs a
long time of synthesis simulation because it searches all
frequency of CS in the MCM.

B. Frequency of Common Subexpressions

Frequency of occurrence of a CS is defined as the num-
ber of times the same CS is being reused or repeated in
the MCM. Thus, high frequency of occurrences of CSs
means that most of the bits in the MCM will be grouped
as CSs, leaving behind fewer numbers of unpaired bits.
In this paper, we firstly analyzed the frequency of occur-
rences of MCMs. The MCMs were randomly designed as
100 FIR filters, and then all coefficients were represented
in CSD format using MATLAB. Figures 4 and 5 show
frequency of occurrence of the horizontal and vertical CS,
respectively. From these figure we found that 3-, 4-, and



0

1

2

3

4

5

6

3 4 5 6 7 8 9 10 11 12 13

bit

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e 

of
H

or
iz

on
ta

l C
S

Fig. 4. Frequency of occurrence of a horizontal common
subexpression for 100 examples.

0

1

2

3

4

5

6

7

2 22 42 62 82 102 122 142 162 182 202
bit

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e 

of
V

er
tic

al
 C

S

Fig. 5. Frequency of occurrence of a vertical common
subexpression for 100 examples.

5-b horizontal CSs, i.e., [101], [101], [1001] and [10001],
etc., have a high correlation with the frequency of occur-
rence, on the other hand there is no association between
the frequency of occurrence and vertical CSs.

C. Proposed combining horizontal and vertical method

The proposed technique is described by the pseudo C
language code shown in Fig. 6. Let us see this in more
detail in the next subsubsection.

Proposed I– Approximate method

The proposed I method is searched as local horizontal
CSs, i.e., [101], [101], [1001], [1001], [10001], [10001] and
their negated versions. Firstly, most common horizontal
subexpressions resulting from the proposed method ex-
tracted from the matrix table in the MCM, and then re-
maining non-zero bits are examined for optimum vertical
CS. This method has a short run-time since it becomes a
local search for the horizontal CSs.

void main()

{

Eliminate zero coefficients;

Merge coefficients with the same value;

Construct the initial coefficient matrix;

for Approximate horizontal CSE (Proposed I)

{

Find coefficients with identical 3-5b CSs;

Extract identical pattern;

Update the coefficient matrix;

if (identical pattern =0) {

break;

}

else {

return;

}

}

for Exact horizontal CSE (Proposed II)

{

c = first(P)

/* P= initial solution having the */

/* smallest number of adders */

while c!= NULL do

if valid(P,c) then output(P,c) {

c = next(P,c)

}

}

for vertical CSE

{

Find coefficients with identical pattern;

Extract identical pattern;

Find coefficients with similar pattern;

Calculate the cost function of pattern;

Extract similar/identical pattern;

Update the coefficient matrix;

if (identical pattern =0) {

Output signal flow graph;

exit(0);

}

else {

return;

}

}

}

Fig. 6. Pseudo C code of the proposed CSE algorithm.

Proposed II– Exact method

This proposed exact method is applied as a brute force
search. As the number of permutation is 12! = 479, 001, 600,
we have the MCM which consists of the smallest number
of adders after 12! search iterations. Then, the remain-
ing non-zero bits are examined for optimum vertical CS.
Pattern identification of vertical CSE is the same as Taka-
hashi et al.’s method. Finally, the number of adders and
registers in the MCM are the smallest values by using this
exact method however the solution is a local-minimum.

IV. Design Example Results

In this section, we present the results of the approxi-
mate (Proposed I) and exact (Proposed II) methods on
randomly generated and FIR filter instances, and com-



pare with the results of previously proposed heuristics.
As the first experiment set, we used randomly generated
53 instances where the size of bitwidth (b) ranges defined
between 8-b and 18-b, and the number of coefficients (N)
ranges between 14 and 2095. Our experiments were im-
plemented in MATLAB using a 2.2 GHz computer with
1024 MB memory. In these examples we set the param-
eters γ = 1.0, β = 0.6 in Equation (2) if we assume that
the MCMs are fabricated in a 0.35 µm standard CMOS
process [7, 10].

Run-time and implementation cost for benchmark ex-
amples are shown in Table 1 and 2, respectively. From
these results we found that the Proposed I method can
be used to design the MCM which has a small implemen-
tation compared to Jang, Vinod and Hartley methods.
The Proposed I method also performs about times as fast
as Takahashi et al.’s method. On the other hand, the
Proposed II method has the results of the smallest imple-
mentation cost but it needs a long computational time in
order to use a brute force search.

V. Conclusion

This paper has been presented a new horizontal and
vertical CSE method in realizing constant multipliers. The
proposed method has searched firstly 3-, 4-, and 5-b hor-
izontal common subexpressions within MCM blocks and
then searched vertical. From the MATLAB synthesis re-
sults included in 20 MCM examples, we have found that
the proposed method has reduced area of constant multi-
plier and decreased run-time compared with our previous
method.

References

[1] M. Mehendale, S. D. Sherlekar, and G. Venkatesh,
“Synthesis of multiplier-less FIR filters with min-
imum number of additions,” in Proc. 1995
IEEE/ACM Int. Conf. on Computer-Aided Design
(ICCAD 1995), San Jose, CA, Nov. 5–9, 1995,
pp. 668–671.

[2] M. Potkonjak, M. B. Srivastava, and A. Chan-
drakasan, “Multiple constant multiplications: Effi-
cient and versatile framework and algorithms for ex-
ploring common subexpression elimination,” IEEE
Trans. Computer-Aided Design, vol. 15, no. 2, pp.
151–165, Feb. 1996.

[3] R. I. Hartley, “Optimization of canonic signed digit
multipliers for filter design,” in Proc. 1991 IEEE Int.
Symp. on Circuits and Systems (ISCAS 1991), Sin-
gapore, June 11–14, 1991, pp. 1992–1995.

[4] R. Paško, P. Schaumout, V. Derudder, S. Vernalde,
and D. Ďuračková, “A new algorithm for elimination

of common subexpressions,” IEEE Trans. Computer-
Aided Design, vol. 18, no. 1, pp. 58–68, Jan. 1999.

[5] Y. Jang and S. Yang, “Low-power CSD linear phase
FIR filter structure using vertical common sub-
expression,” Electron. Lett., vol. 38, no. 15, pp. 777–
779, July 2002.

[6] A. P. Vinod, E. M-K. Lai, A. B. Premkumar, and
C. T. Lau, “FIR filter implementation by efficient
sharing of horizontal and vertical common subexpres-
sions,” Electron. Lett., vol. 39, no. 2, pp. 251–253,
Jan. 2003.

[7] Y. Takahashi and M. Yokoyama, “New cost-effective
VLSI implementation of multiplierless FIR filter us-
ing common subexpression elimination,” in Proc. IS-
CAS 2005, Kobe, Japan, May 23–26, 2005, pp. 845–
848.

[8] C. Y. Yao, H. H. Chen, T. F. Lin, C. J. Chien,
and C. T. Hsu, “A novel common-subexpression-
elimination method for synthesizing fixed-point FIR
filters,” IEEE Trans. Circuits Syst. I, vol. 51, no. 11,
pp. 2215–2221, Nov. 2004.

[9] A. P. Vinod and E. M-K. Lai, “Comparison of the
horizontal and the vertical common subexpression
elimination methods for realizing digital filters,” in
Proc. ISCAS 2005, pp. 496–498.

[10] Y. Takahashi, T. Sekine, and M. Yokoyama, “70 MHz
multiplierless FIR Hilbert transformer in 0.35 µm
standard CMOS library,” IEICE Trans. Fundamen-
tals, vol. E90-A, no. 7, pp. 1376–1383, July 2007.

[11] N. Banerjee, J. H. Choi, and K. Roy, “A process
variation aware low power synthesis methodology for
fixed-point FIR filters,” in Proc. 2007 ACM/IEEE
Int. Symp. on Low Power Design (ISLPED 2007),
Portland, OR, Aug. 27–29, 2007, pp. 147–152.

[12] K. Suzuki, H. Ochi, and S. Kinjo, “A design of FIR
filter using CSD with minimum number of registers,”
in Proc. 1996 IEEE Asia Pacific Conf. on Circuits
and Systems (APCCAS 1996), Seoul, Korea, Nov.
18-21, 1996, pp. 227–230.



TABLE I
Comparison of Run-time for Benchmark Examples.

N × b Jnag[s] Vinod[s] Hartley[s] Takahashi[s] proposed I[s] proposed II[s]
14 × 10 ∼ 0 ∼ 0 0.02 0.06 0.03 146.19
18 × 9 ∼ 0 0.02 0.02 0.06 0.03 151.67
22 × 9 0.02 ∼ 0 0.02 0.06 0.03 150.55
36 × 8 ∼ 0 ∼ 0 0.03 0.08 0.05 238.40
30 × 10 0.02 0.02 0.03 0.08 0.05 174.80
34 × 10 0.02 0.02 0.05 0.14 0.08 284.42
35 × 10 ∼ 0 0.02 0.03 0.08 0.05 188.13
45 × 10 ∼ 0 0.02 0.03 0.08 0.05 271.00
46 × 11 0.02 0.02 0.03 0.13 0.06 237.80
49 × 11 0.02 0.00 0.03 0.14 0.06 242.69
49 × 11 0.02 0.02 0.03 0.13 0.08 253.84
66 × 12 0.02 0.02 0.03 0.17 0.09 318.38
64 × 11 0.02 0.02 0.03 0.14 0.08 285.67
77 × 13 0.02 0.02 0.05 0.22 0.09 352.33
92 × 13 0.03 0.02 0.06 0.27 0.13 412.47
98 × 13 0.02 0.03 0.08 0.27 0.14 462.38
101 × 13 0.03 0.02 0.06 0.28 0.14 467.77
101 × 13 0.02 0.02 0.08 0.28 0.14 475.22
102 × 13 0.02 0.02 0.06 0.28 0.16 476.33
105 × 13 0.02 0.03 0.06 0.28 0.14 471.48
105 × 14 0.02 0.03 0.06 0.30 0.16 476.72
116 × 14 0.02 0.02 0.06 0.33 0.17 523.74
128 × 13 0.02 0.03 0.08 0.28 0.13 711.50
146 × 13 0.03 0.03 0.09 0.36 0.19 616.14
136 × 14 0.03 0.03 0.08 0.38 0.19 609.14
138 × 14 0.02 0.02 0.09 0.39 0.19 603.05
141 × 14 0.03 0.03 0.09 0.39 0.19 617.38
142 × 14 0.03 0.03 0.09 0.39 0.20 619.78
142 × 14 0.03 0.03 0.09 0.41 0.19 629.95
142 × 14 0.02 0.03 0.06 0.27 0.14 477.64
143 × 14 0.03 0.03 0.09 0.41 0.19 609.31
144 × 14 0.03 0.03 0.08 0.39 0.19 593.48
146 × 14 0.03 0.02 0.09 0.41 0.20 612.69
300 × 8 0.03 0.03 0.13 0.36 0.22 1010.00
216 × 13 0.05 0.03 0.13 0.52 0.25 766.70
207 × 15 0.03 0.03 0.14 0.50 0.22 1045.80
238 × 14 0.03 0.05 0.16 0.53 0.24 1076.00
270 × 13 0.03 0.03 0.14 0.05 0.23 1250.80
295 × 15 0.03 0.05 0.20 0.70 0.31 1556.90
363 × 14 0.11 0.08 0.22 0.78 0.34 1728.10
348 × 15 0.05 0.05 0.22 0.80 0.33 1621.00
350 × 15 0.05 0.05 0.22 0.83 0.38 1778.10
438 × 14 0.06 0.08 0.23 1.19 0.53 1675.69
414 × 15 0.06 0.06 0.23 1.14 0.52 1590.02
433 × 15 0.05 0.08 0.28 1.02 0.44 2537.00
652 × 16 0.08 0.09 0.39 1.59 0.64 3083.70
680 × 18 0.09 0.13 0.52 2.08 0.88 5423.00
743 × 17 0.11 0.14 0.44 2.31 0.97 2914.39
928 × 17 0.14 0.16 0.55 2.84 1.17 3601.03
1376 × 18 0.17 0.20 0.67 3.70 1.42 6648.50
1947 × 14 0.14 0.19 0.86 3.61 1.47 6514.30
2392 × 14 0.20 0.27 0.92 5.20 2.13 6401.89
2095 × 16 0.22 0.28 0.92 5.45 2.08 6405.95



TABLE II
Comparison of Implementation Cost for Benchmark Examples.

N × b(Cost [%]) Not-CSE Jang Vinod Hartley Takahashi Proposed I Proposed II
14 × 10 28(100) 23.2(82.8) 21.2(75.7) 22.2(79.2) 20.0(71.4) 20.0(71.4) 20.0(71.4)
18 × 9 23(100) 20.8(90.4) 19.0(82.6) 23.0(100) 19.0(82.6) 19.0(82.6) 19.0(82.6)
22 × 9 32(100) 23.4(73.1) 28.2(88.1) 31.2(97.5) 25.4(79.3) 25.4(79.3) 24.2(75.6)
36 × 8 50(100) 41.6(83.2) 40.2(80.4) 41.2(82.4) 36.8(73.6) 36.8(73.6) 36.8(73.6)
30 × 10 39(100) 33.2(85.1) 32.4(83.0) 36.2(92.8) 30.8(78.9) 31.4(80.5) 30.8(78.9)
34 × 10 84(100) 54.4(64.7) 59.4(70.7) 73.2(87.1) 56.6(67.3) 56.6(67.3) 56.6(67.3)
35 × 10 42(100) 33.2(79.0) 29.2(69.5) 39.2(93.3) 29.2(69.5) 29.2(69.5) 29.2(69.5)
45 × 10 58(100) 48(82.7) 42.2(72.7) 53.2(91.7) 39.8(68.6) 39.8(68.6) 39.8(68.6)
46 × 11 74(100) 69.4(93.8) 48.2(65.1) 57.8(78.1) 49.2(66.4) 50.4(68.1) 46.8(63.2)
49 × 11 68(100) 56.2(82.6) 53.4(78.5) 53.2(78.2) 49.8(73.2) 49.8(73.2) 48.8(71.7)
49 × 11 86(100) 59.6(69.3) 61.4(71.3) 71.2(82.7) 56.6(65.8) 56.6(65.8) 56.6(65.8)
66 × 12 112(100) 90.6(80.8) 75.4(67.3) 99.2(88.5) 70.2(62.6) 70.2(62.6) 69.2(61.7)
64 × 11 84(100) 54.4(64.7) 59.4(70.7) 73.2(87.1) 56.6(67.3) 56.6(67.3) 56.6(67.3)
77 × 13 144(100) 107.4(74.5) 101.2(70.2) 114.4(79.4) 95.4(66.2) 94.4(65.5) 92.4(64.1)
92 × 13 152(100) 118.6(78.0) 111.4(73.2) 122.8(80.7) 102.2(67.2) 102.2(67.2) 102.2(67.2)
98 × 13 188(100) 152.6(81.1) 122.2(65) 139.4(74.1) 115.6(61.4) 116.8(62.1) 116.2(61.8)
101 × 13 180(100) 146.6(81.4) 126.4(70.2) 144.8(80.4) 114.0(63.3) 115.0(63.8) 113.0(62.7)
101 × 13 198(100) 155.6(78.5) 130.4(65.8) 150.8(76.1) 122.4(61.8) 122.4(61.8) 120.6(60.9)
102 × 13 189(100) 147.6(78.0) 136.2(72.0) 157.8(83.4) 123.0(65.0) 124.8(66.0) 120.4(63.7)
105 × 13 174(100) 123.6(71.0) 121.2(69.6) 143.4(82.4) 112.4(64.5) 112.4(64.5) 111.4(64.0)
105 × 14 170(100) 141.6(83.2) 124.2(73.0) 139.4(82) 109.8(64.5) 108.8(64.0) 108.8(64.0)
116 × 14 209(100) 158.4(75.7) 138.4(66.2) 166.4(79.6) 134.0(64.1) 134.0(64.1) 132.4(63.3)
128 × 13 217(100) 137.6(63.4) 144.4(66.5) 178.4(82.2) 141.2(65.0) 141.2(65.0) 138.2(63.6)
146 × 13 240(100) 197.4(82.2) 173.4(72.2) 199.8(83.2) 143.4(59.7) 143.4(59.7) 138.8(57.8)
136 × 14 239(100) 179.6(75.1) 155.2(64.9) 183.4(76.7) 153.2(64.1) 154.2(64.5) 149.2(62.4)
138 × 14 226(100) 184.6(81.6) 160.4(70.9) 182.4(80.7) 147.0(65.0) 147.0(65.0) 143.0(63.2)
141 × 14 240(100) 177.6(74.0) 167.2(69.6) 187.4(78.0) 159.8(66.5) 159.8(66.5) 157.8(65.7)
142 × 14 187(100) 147.6(78.9) 121.2(64.8) 146.4(78.2) 117.8(62.9) 117.8(62.9) 116.8(62.4)
142 × 14 246(100) 202.6(82.3) 171.4(69.6) 190.4(77.3) 151.4(61.5) 152.4(61.9) 147.4(59.9)
142 × 14 251(100) 211.2(84.1) 175.2(69.8) 195.4(77.8) 155.8(62.0) 155.8(62.0) 153.8(61.2)
143 × 14 224(100) 164.4(73.3) 162.4(72.5) 179.4(80.0) 146.4(65.3) 146.4(65.3) 143.4(64.0)
144 × 14 207(100) 159.4(77.0) 160.4(77.4) 156.4(75.5) 148.0(71.4) 148.0(71.4) 143.6(69.3)
146 × 14 228(100) 176.4(77.3) 162.4(71.2) 187.4(82.1) 145.8(63.9) 145.8(63.9) 145.8(63.9)
300 × 8 98(100) 76.2(77.7) 66.2(67.5) 80.2(81.8) 61.8(63.0) 61.8(63.0) 61.8(63.0)
216 × 13 230(100) 175.4(76.2) 190.4(82.7) 188.4(81.9) 151.6(65.9) 151.6(65.9) 149.6(65.0)
207 × 15 292(100) 203.6(69.7) 200.4(68.6) 219.4(75.1) 190.6(65.2) 190.6(65.2) 185.6(63.5)
238 × 14 375(100) 252.6(67.3) 239.4(63.8) 285.4(76.1) 226.6(60.4) 226.6(60.4) 224.6(59.8)
270 × 13 263(100) 179.6(68.2) 174.4(66.3) 224.8(85.4) 171.8(65.3) 171.8(65.3) 170.4(64.7)
295 × 15 480(100) 387.4(80.7) 288.4(60.0) 384.4(80.0) 285.0(59.3) 285.0(59.3) 275.8(57.4)
363 × 14 500(100) 336.6(67.3) 332.4(66.4) 371.4(74.2) 315.6(63.1) 315.6(63.1) 311.6(62.3)
348 × 15 430(100) 282.6(65.7) 281.4(65.4) 351.4(81.7) 268.6(62.4) 268.6(62.4) 268.6(62.4)
350 × 15 564(100) 396.6(70.3) 380.2(67.4) 431.4(76.4) 363.4(64.4) 365.4(64.7) 358.4(63.5)
438 × 14 604(100) 472.6(78.2) 363.4(60.1) 506.4(83.8) 357.0(59.1) 357.0(59.1) 350.8(58.0)
414 × 15 581(100) 440.6(75.8) 393.4(67.7) 461.4(79.4) 378.6(65.1) 378.6(65.1) 372.6(64.1)
433 × 15 658(100) 523.4(79.5) 388.4(59.0) 537.4(81.6) 384.6(58.4) 384.6(58.4) 380.0(57.7)
652 × 16 901(100) 617.6(68.5) 605.4(67.1) 692.4(76.8) 558.4(61.9) 558.4(61.9) 554.4(61.5)
680 × 18 1566(100) 1131.6(72.2) 992.4(63.3) 1314.4(83.9) 931.6(59.4) 931.6(59.4) 926.6(59.1)
743 × 17 1020(100) 713.6(70.0) 682.4(66.9) 747.4(73.2) 639.6(62.7) 638.6(62.6) 631.6(61.9)
928 × 17 1355(100) 1045.6(77.1) 853.4(62.9) 1039.4(76.7) 830.6(61.2) 830.6(61.2) 820.6(60.5)
1376 × 18 1542(100) 1218.6(79.0) 981.4(63.6) 1240.4(80.4) 947.6(61.4) 947.6(61.4) 934.6(60.6)
1947 × 14 536(100) 357.6(66.7) 392.4(73.2) 459.4(85.7) 356.6(66.5) 356.6(66.5) 350.6(65.4)
2392 × 14 512(100) 268.0(52.3) 338.4(66.0) 450.8(88.0) 307.0(59.9) 307.0(59.9) 306.0(59.7)
2095 × 16 1084(100) 899.4(82.9) 672.4(62.0) 919.4(84.8) 658.6(60.7) 658.6(60.7) 656.6(60.5)

Reduction Ave. – 24.0% 30.3% 18.2% 34.7% 34.6% 35.6%


