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Abstract: This paper proposes a method for designing
the multiplierless finite impulse response (FIR) digital
filters over the Canonic Signed-Digit (CSD) coefficient
space. The proposed method is a novel local search al-
gorithm with respect to the frequency of appearance of
signed-power-of-two (SPT) terms. The proposed algo-
rithm is about 2 times as fast as the conventional local
search algorithms. Although this algorithm is intended
to reduce the number of partial SPT terms, it can be
used to design a FIR filter which has small number of
SPT terms as the conventional algorithms. The filter
operation and its performance are evaluated by using
a field programmable gate array (FPGA). The imple-
mentation example shows that the area-time product of
the proposed 28th-order lowpass filter is about 2–17%
smaller than those of the other local search algorithms.
In addition, the other implementation example shows
that the area-time product of the proposed 31st-order
Hilbert transformer is about 85% smaller than that of a
2’s complement implementation.

1. Introduction

In VLSI implementations, a general multiplier ele-
ment is very costly. From this reason, it is attractive to
carry out the multiplication by using shifts and adds.
The shifts can be realized by using hard-wired shifters
and hence they are essentially free.

During the past two decades, numerous algorithms
for designing the multiplierless FIR filters have been pro-
posed [1]–[10]. They include the mixed-integer linear
programmings (MILPs) [1]–[4], the genetic algorithms
(GAs) [5], [6] and the local search algorithms [7]–[10].
The MILPs and GAs require a long computation time,
which limits its usefulness to designing filters whose co-
efficient length is relatively short. On the other hand,
the local search algorithms have the shortest computa-
tion time of three algorithms described in the above,
however, these methods are inferior to MILPs and GAs
in the light of its accuracy. In view of computer de-
sign and hardware implementation, the local search al-
gorithms have been found to perform nearly as well as
the MILPs while requiring substantially less computa-
tional time. Consequently, even if all the coefficients
cannot meet the optimal solution, the local search algo-

rithm is a more effective means of the multiplierless FIR
filter design.

In this paper, we describe a design method for the op-
timized FIR digital filters over the CSD coefficient space.
The proposed algorithm is performed through two steps.
First, a prototype optimal FIR filter is designed by us-
ing the Remez-exchange algorithm. The second step
involves finding the filter parameter such that the re-
sulting filter meets the given criteria with the simplest
coefficient representation forms. This approach is based
on the local search algorithm. In addition, design exam-
ples and FPGA implementations show the usefulness of
the proposed algorithm.

2. Background

2.1 Linear-Phase FIR Filters

The zero-phase frequency response of a linear-phase
Nth-order FIR filter can be expressed as

H(ω) =
M∑

n=0

h(n) Trig(ω, n), (1)

where h(n) are filter coefficients and Trig(ω,n) is an ap-
propriate trigonometric function depending on whether
N is odd or even and whether the impulse response is
symmetrical or antisymmetrical. Here, M =N/2 if N is
even, M =(N − 1)/2 if N is odd.

The general form for expressing coefficient values as
a sum of SPT terms is given by

h(n) =
L∑

m=1

am,n 2−m, (2)

where am,n ∈ {1, 0, 1}. Here, 1 denotes −1. In this
representation form, maximum allowable wordlength is
L-bits. A minimum representation has the minimum
required number of SPT terms. One minimum repre-
sentation is the CSD code representation. Here, two
SPT terms can not be adjacent. The total number of
SPT terms (#SPT) in Eq.(2) is

#SPT =
M∑

n=0

L∑
m=1

(
a+

m,n + a−m,n

)
. (3)
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where a+
m,n and a−m,n are positive and negative nonzero

bits, respectively. In some applications, it may be at-
tractive to limit the number of SPT terms for each co-
efficients. This may be the case for a transposed form
FIR filter which has the critical path without pipeline
determined by the coefficient with most SPT terms. Of
course, the filter can be pipelined, but the number of
pipeline stages required for a given sample rate is also
dependent on the number of SPT terms for a coefficient.
In the optimization, this can be handled by adding the
following constraint

L∑
m=1

(
a+

m,n + a−m,n

) ≤ Smax, (4)

where Smax is the maximum number of SPT terms per
coefficient.

2.2 The Average Appearance Ratio of SPT
Terms

The average appearance ratio of SPT terms allocated
to the m-th digit of all M -digit CSD numbers [4] is given
by

g(m) =
6{1− (−0.5)m}{1− (−0.5)M−m+1}

(6M + 4)− (3M + 4)(−0.5)M
. (5)

Because the designed FIR filters have many small co-
efficients with respect to the maximum coefficients, the
larger g(m) in Eq.(5), the larger m becomes. This means
that we should take only some least significant digits
(LSDs) into considerration. The MILP algorithm ap-
plied only to 3-LSDs is described in [4]. However, the
MILP algorithm classified in a complete search method
(e.g. 0/1-variable method) requires a long computation
time, which limits its usefulness to designing filters rel-
atively. Generally, the number of conditions and the
number of variables grow approximately as O(2M3),
where M is the number of coefficient.

Unlike the MILP algorithm, the local search opti-
mizes the coefficients set by changing always one coeffi-
cient in time to the next (higher or lower) closest quan-
tized value. Moreover, it is achieved by evaluating the
frequency response of the FIR filter with the resulting
coefficients. The resulting number of conditions and the
number of variables become O(2M2). Therefore, the
optimization problem using local search is expected to
have an M -fold speedup as compared with the MILP
algorithm, except that the local search is inferior to the
MILP algorithm in the light of its accuracy. In the next
section, we propose a new local search algorithm based
on the above concept.

3. Proposed algorithm

3.1 Local Search Optimization

The main objective in the optimization of the digital
filters is usually to minimize the weighted peak error
defined as

ε = max
0≤ω≤π

W (ω)
∣∣∣H(ejω)−Hd(ejω)

∣∣∣, (6)

where Hd(ejω) and H(ejω) represent the desired trans-
fer function and the actual transfer function obtained
after the completion the optimization, respectively. In
addition, W (ω) represents a weighting function having
different values in the passband and stopband region(s)
of the FIR digital filter.

There are two main approaches available for the
above optimization, namely the global and the local op-
timization. In the global optimization, the entire solu-
tion space is searched for the global minimum. On the
other hand, in the local optimization, the solution space
is searched in the neighborhood of a local minimum.
In practice, if the local search is conducted around the
global minimum, then the solution will coincide with
that obtained from global search. The optimization of
the FIR digital filters having CSD coefficients is achieved
by using a combination of the global optimization and
the local optimization in two stages as follows: In the
first stage, the global optimization is carried out to min-
imize the weighted peak error

ε1 = max
0≤ω≤π

W1(ω)
∣∣∣Ha(ω)−Hd(ω)

∣∣∣ (7)

between an actual transfer function Ha(ω) and the de-
sired transfer function Hd(ω) assuming that the actual
coefficients. On the other hand, in the second stage,
the local optimization is carried out to minimize the
weighted peak error

ε2 = max
0≤ω≤π

W2(ω)
∣∣∣Hcsd(ω)−Ha(ω)

∣∣∣ (8)

between the final transfer function Hcsd(ω) and the
transfer function Ha(ω) obtained in the first stage as-
suming that the CSD coefficients. Generally, the weight-
ing function W1(ω) in ε1 and W2(ω) in ε2 are different in
the passband and the stopband regions. In this way, the
local optimization leads to a solution that approximately
equals the result of the global optimization, but this op-
timization employs CSD (instead of actual) coefficients.
This paper is concerned with the local optimization of
FIR digital filters having CSD coefficients.

3.2 Proposed Local Search

The proposed local optimization for the FIR digital
filters over the CSD coefficient space is facilitated by
using a bivariate search as follows:

1. Calculate the actual coefficient values (ha) associ-
ated with the transfer function Ha(ω) by using the
Remez-exchange algorithm.

2. ha are rounded to the closest CSD coefficients
(hcsd1) as following

hcsd1 = QL

[
ht

]
, (9)

where QL [x] is L-digit CSD rounded value of x and
x has the maximum number of SPT terms Smax.

3. Let J(> 0) represent the total number of distin-
guishable FIR digital filter coefficients. Here, J is
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Figure 1. Conceptual diagram of the coefficient pair.

the partial number of the coefficients (i.e. number
of coefficients represented by some LSDs only) in
the symmetrical FIR digital filters. J is given by
heuristic approach and indicates generally the num-
ber of coefficient represented within the LSDs range
of 3 to 5 [4].

The coefficients are grouped into J/2 pairs. The
total number of such coefficient pairs is

J +
J(J − 1)

2
=

J(J + 1)
2

, (10)

if the pairs are permitted to consist of nondistinct
as well as distinct numbers.

4. Construct an echelon matrix X given by the fol-
lowing formula

X =




h01h01h01 h02h02h02 · · · h0J−1h0J−1h0J−1 h0Jh0Jh0J

000 h12h12h12 · · · h1J−1h1J−1h1J−1 h1Jh1Jh1J

...
. . . . . .

...
000 · · · · · · 000 hJ−1JhJ−1JhJ−1J


 , (11)

(h01,h02, · · · ,hJ−1J 6= 0)

where hJ−1J = [h(J−1) h(J)]T indicate distinct
coefficient pair.

5. For each distinct coefficient pair hJ−1J , four per-
turbations are performed by simultaneously round-
ing the first number in the pair up or down by one
digit and by rounding the second number in the
pair up or down by one digit. Similarly, for each
nondistinct coefficient pair, two perturbations are

performed by rounding the number up or down by
one digit. Figure 1 shows conceptual diagram of
four perturbations.

The total of the perturbed coefficients is given
by

2J +
4J(J − 1)

2
= 2J2. (12)

6. The local search is based on the iterative manner
as described in the following: The unperturbed val-
ues of the coefficient pair are replaced with the per-
turbed values until no further reduction in ε2 is
achieved.

7. Check the stopping rule. If no further reduction in
ε2 is achieved, stop the process. Otherwise, go to
step 5.

In the conventional local search algorithm, 2N2 pairs of
the perturbed coefficients must be calculated. On the
other hand, only 2J2 pairs of the perturbed coefficients
are calculated in the proposed local search algorithm.
It means that the proposed algorithm while requiring
computational time is affected by appearance ratio of
non-zero bits.

4. Design Examples

4.1 28th-order FIR Lowpass Filter

The 28th-order lowpass filter as described in [10] is
considered. The design of lowpass filter whose normal-
ized passband edge frequency (PF) is 0.1280, normalized
stopband edge frequency (SF) is 0.2048, the maximum
allowed error (or ripple) in passband (denoted as PR)
is 0.0230 and the maximum allowed error (or ripple)
in the stopband (denoted as SR) is 0.0320. In this ex-
ample, the proposed algorithm is set to search only for
the coefficients represented by 4-LSDs. The CSD coef-
ficients obtained by using the proposed algorithm (with
Smax = 2) and them expressed in [4], [8]–[10] are sum-
marized in Table 1. These frequency response of the
resulting filters are shown in Fig.2. The computational
times required by a 1 GHz Pentium III processor (with
512 MB RAM running Windows98 and MATLAB 5.3)
prepared to design the filter is also included in Table 1.
From this table and Fig.2, it is found that the proposed
algorithm can be used to design FIR filter which has
small #SPT as the conventional algorithms. The fil-
ter response obtained by using this algorithm is much
the same as obtained by using the other algorithms. In
addition, the proposed local search algorithm performs
about 2 times as fast as the conventional local search
algorithms. This shortening of calculation time is very
significant in the light of turn-around-time (TAT).

4.2 31st-order Hilbert Transformer

As the other example, the 31st-order Hilbert trans-
former [11] is designed by using the proposed method.
The number of non-zero digit of the coefficients is given
by 2-bits (i.e. Smax = 2) in this example. When the
word length of the coefficients is more than 7-bit, we
can design the 31st-order Hilbert transformer. Then,



Table 1. 28th-order lowpass filter coefficient values and filter responses obtained by different approaches.
Actual (ha) Closest CSD (hcsd1) MILP[4] [8] [9] [10] Proposed

h(0) 0.00681288 +2−7 + 2−10 +2−8 + 2−10 +2−7 +2−7 +2−8 +2−7

h(1) 0.00301232 +2−8 − 2−10 +2−9 +2−8 +2−8 +2−9 +2−8

h(2) − 0.00591135 −2−7 + 2−9 −2−8 −2−7 + 2−9 −2−7 + 2−9 −2−8 −2−8

h(3) − 0.01418709 −2−6 + 2−10 −2−6 −2−6 + 2−10 −2−6 −2−6 −2−6

h(4) − 0.00919492 −2−7 − 2−10 −2−7 −2−7 −2−7 −2−7 −2−7

h(5) 0.01100587 +2−6 − 2−8 +2−6 − 2−8 +2−6 − 2−8 +2−6 − 2−8 +2−6 − 2−8 +2−6 − 2−8

h(6) 0.02840078 +2−5 − 2−9 +2−5 +2−5 − 2−9 +2−5 +2−5 +2−5 − 2−9

h(7) 0.01775964 +2−6 + 2−9 +2−6 +2−6 + 2−9 +2−6 +2−6 +2−6 + 2−9

h(8) − 0.02423816 −2−5 + 2−7 −2−5 + 2−7 −2−5 + 2−7 −2−5 + 2−7 −2−5 + 2−7 −2−5 + 2−7

h(9) − 0.06216134 −2−4 −2−4 −2−4 −2−4 −2−4 −2−4

h(10) − 0.04196937 −2−5 − 2−7 −2−5 − 2−7 −2−5 − 2−7 −2−5 − 2−7 −2−5 − 2−7 −2−5 − 2−7

h(11) 0.06109336 +2−4 +2−4 +2−4 +2−4 +2−4 +2−4

h(12) 0.20879910 +2−2 − 2−5 +2−2 − 2−5 +2−2 − 2−5 +2−2 − 2−5 +2−2 − 2−5 +2−2 − 2−5

h(13) 0.31717250 +2−2 + 2−4 +2−2 + 2−4 +2−2 + 2−4 +2−2 + 2−4 +2−2 + 2−4 +2−2 + 2−4

PF(0.1280) 0.1273 0.1281 0.1299 0.1309 0.1304 0.1280

SF(0.2048) 0.1966 0.2001 0.1968 0.1958 0.1968 0.2019

PR(0.0230) 0.0160 0.0151 0.0215 0.0195 0.0172 0.0182

SR(0.0320) 0.0292 0.0301 0.0320 0.0305 0.0317 0.0320

#SPT 26 20 23 20 19 21

Computation time 320 s 51.0 s 51.2 s 93.1 s 32.0 s
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Figure 2. Frequency response of 28th-order lowpass filter.
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Figure 3. Frequency response of 31st-order Hilbert transformer.

the word length of the coefficients of the Hilbert trans-
former is set to 8-bits. In this example, the proposed
algorithm is set to search only for coefficient represented
by 4-LSDs.

Table 2 indicates that required #SPT of 31st-order
Hilbert transformer is decreased from 13 to 10. The
frequency response of this filter is illustrated in Fig.3.

From this figure, it is shown that SR of the proposed
method is extremely improved with respect to that of
the closest CSD.

5. Implementation Results

A testbed prepared for evaluating the above examples
is constructed with Xilinx XC2S30-6 (SpartanII series)



Table 3. Comparison of mapping results for 28th-order FIR lowpass filter.
Closest CSD MILP[4] [8] [9] [10] Proposed

Adders/Subtracters 33 29 31 29 29 31

Slices 302/432 282/432 300/432 282/432 282/432 282/432
(69.9%) (65.3%) (69.4%) (65.3%) (65.3%) (65.3%)

A (4-input LUTs) 451/864 502/864 419/864 417/864 428/864 448/864

(52.2%) (58.1%) (48.5%) (48.3%) (49.5%) (51.9%)

T (Time) 15.0 ns 14.1 ns 15.9 ns 13.6 ns 13.2 ns 12.3 ns
A·T (Area-Time product) 1.00 1.05 0.98 0.83 0.84 0.81

Table 4. Comparison of mapping results for 31st-order Hilbert transformer.
Actual Closest CSD Final CSD

(2’s comp. bits) (Smax = 2, CSD bits) (Smax = 2, CSD bits)
Adders/Subtracters 56 18 17

Slices 247/432 82/432 79/432
(57.2%) (18.9%) (18.3%)

A (4-input LUTs) 366/864 120/864 113/864

(42.4%) (13.9%) (13.1%)
T (Time) 17.3 ns 11.3 ns 8.22 ns

A·T (Area-Time product) 1.00 0.21 0.15

Table 2. 31st-order Hilbert transformer coefficient values
and filter responses.

Actual Closest CSD Final CSD

(ha) (hcsd1) (hcsd)

h(0) −0.03413334 −2−5 −2−5

h(1) 0.00000000 0 0

h(2) −0.02044246 −2−5 + 2−7 −2−6

h(3) 0.00000000 0 0

h(4) −0.01794832 −2−6 −2−6

h(5) 0.00000000 0 0

h(6) −0.00587839 −2−6 −2−7

h(7) 0.00000000 0 0

h(8) −0.02052302 +2−5 − 2−7 −2−6

h(9) 0.00000000 0 0

h(10) 0.07036104 +2−4 + 2−7 +2−4

h(11) 0.00000000 0 0

h(12) 0.17509460 +2−3 + 2−5 +2−3 + 2−5

h(13) 0.00000000 0 0

h(14) 0.62373170 +2−1 + 2−3 +2−1 + 2−3

h(15) 0.00000000 0 0

PF(0.0500, 0.4500) 0.0550, 0.04450 0.0549, 0.4451

SF(0.0400, 0.4600) 0.0390, 0.46080 0.0392, 0.4608

PR(0.1222) 0.1842 0.1602

SR(0.0153) 0.0181 0.0173

#SPT 13 10

FPGA. The Xilinx XC2S30-6 FPGA consists of a 12×18
array of CLBs, each having two 4-input LUTs, one 3-
input LUT and two D flip-flops (D-FFs). Two examples
are described by VHDL for implementation, and also are
actually implemented on XC2S30-6 using Leonard Spec-
trum v2001.1d (Exemplar) and ISE Alliance (Xilinx).
In those implementations, the automatic placement and
routing compilation option are used.

The proposed algorithm also enables the use of the
common subexpression reduction algorithms (see, e.g.
[12]– [15]) for the evaluation of the filter costs. In those
examples, the subexpression reduction algorithm based
on the method described in [15] is carried out for all the
coefficients satisfying the amplitude specifications.

To evaluate the FIR filters we introduce an area-time
product (A·T) which is motivated by practical cost mea-
sures for circuits. Comparisons are done using three
metrics: A=area, T=time, and A·T=area×time, where
T refers to the data sampling period or the inverse of
the throughput. Area is measured by the number of
required 4-input LUTs.

5.1 28th-order FIR Lowpass Filter

Synthesis results in terms of module count and speed
are summarized in Table 3. As you can see, the pro-
posed filter is the fastest speed of all the local search
algorithms, but the increase in the number of gate cost
is very small. The implementation example shows that
the area-time product of the proposed 28th-order low-
pass filter is about 2–17% smaller than those of the other
local search algorithms.

5.2 31st-order Hilbert Transformer

Synthesis results in terms of module count and speed
are summarized in Table 4. Figure 4 illustrates mapping
results of the logic in the FPGA chip. The experimental
results show that the proposed Hilbert transformer is
superior to the others in all parameters. We find that
area-time product of the proposed Hilbert transformer
is about 85% smaller than that of a 2’s complement
implementation.

6. Conclusions

In this paper, a new design of the optimization of the
FIR digital filters over the Canonic Signed-Digit (CSD)
coefficient space has been presented. This algorithm
has been about 2 times as fast as the conventional lo-
cal search algorithms. The usefulness of this algorithm
has been shown through two examples and two FPGA
implementations.

The scope of this algorithm in the design of the mul-
tiplierless FIR filters (e.g. mutilate filters, 2-D filters)



(a) 2’s complement.

(b) Closest CSD.

(c) Final CSD.

Figure 4. Mapping results of 31st-order Hilbert trans-
former.

has a substantial potential. Extensions of the proce-
dure to deal with SPT terms are undertaken. Further
investigation is required to assess the performance of
this algorithm for the design of multiplierless IIR filters.
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