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Abstract—This paper reports an analytical method of a power
clock generator based on a switched capacitor circuit which is
used in adiabatic logic. We derive first an equivalent circuit model
of the switched capacitor circuit. We then discuss the design
optimization of the capacitance ratio. Finally, we show that the
analytical results agree rather well with the SPICE simulation
results.

I. INTRODUCTION

In the design of low-power VLSI circuits, adiabatic (or
energy recovery) logic shows great potential, because they
are able to break the lower limit of the energy dissipation
in static CMOS which amounts to CVdd

2/2, where C is a
load capacitance, and Vdd is a supply voltage of VLSI circuit.
Numerous designs of adiabatic logic have been presented
[1]–[10]. The driving of adiabatic logic requires adiabatic
controlled sources of voltage. The adiabatic drivers fall into
two classes: resonant driver and staircase driver. The resonant
driver generates the pulses from the natural oscillations of
a resonator, with power recovery provided by a dc-voltage
source. The generators of quasi-sinusoidal pulses can be built
around the simplest resonator, namely, an LC circuit. Such a
driver has been used in Refs. [2]–[7], and [9]. On the other
hand, a staircase driver was first proposed by L. J. Svensson
and J. G. Koller [1], and then has been used in Refs. [8]
and [10]. The staircase driver includes a switched capacitor
regenerator, which has a tank capacitor for restoring the charge
energy. In Ref. [8], the properties and stability of a switched
capacitor regenerator has been discussed, however, has not
been discussed yet from the viewpoint of design optimization.

This paper reports an analytical method of the switched
capacitor regenerator. We derive first an equivalent circuit
model of the switched capacitor circuit, and then propose
analytical methods for step voltage difference. Finally, we
show that the analytical results agree rather well with the
SPICE simulation results.

II. CONVENTIONAL CMOS LOGIC VS. ADIABATIC LOGIC

The conventional switching can be understood by using a
simple CMOS inverter. The CMOS inverter can be considered

to consist of a pull-up and pull-down networks connected to a
load capacitance C. The pull-up and pull-down networks are
actually MOS transistors in series with the same load C. Both
transistors can be modeled by an ideal switch in series with a
resistor which is equal to the corresponding channel resistance
of the transistor in the saturation mode, as shown in Fig. 1.
When a conventional CMOS inverter is set into a logical “1”
state, a charge Q = CVdd is delivered to the load and the
energy which the supply applies is Eapplied = QVdd = CVdd

2.
The energy stored into the load C is a half of the supplied
energy:

Estored =
1

2
CVdd

2. (1)

The same amount of energy is dissipated during the discharge
process in the NMOS pull-down network because no energy
can enter the ground rail Q × Vgnd = Q × 0 = 0. From the
energy conservation law, a conventional CMOS logic emits
heat and, in this way, it wastes energy in every charge-
discharge cycle:

Etotal = Echarge + Edischarge

=
1

2
CVdd

2 +
1

2
CVdd

2

= CVdd
2. (2)

If the logic is driven by a certain frequency f (= 1/T ), where
T is the period of the signal, then the power of the CMOS
gate is determined as:

Ptotal =
Etotal

T
= CVdd

2f. (3)

The main idea in an adiabatic switching shown in Fig. 2
is that transitions are considered to be sufficiently slow so
that heat is not emitted significantly. This is made possible by
replacing the DC power supply by a resonance LC driver or
oscillator. If a constant current source delivers the Q = CVdd

charge during the time period 4T , the energy dissipation in
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Fig. 1. Charging an RC tree with a switch.
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Fig. 2. Adiabatic charging of an RC tree.

the channel resistance R is given by

Ediss = ξP4T

= ξI2R4T

= ξ

(

CVdd

4T

)2

R4T, (4)

where ξ is a shape factor which depends on the shape of the
clock edges [11]. It takes on the minimum value ξmin = 1
if the charge of the load capacitor is DC modulated. For a
sinusoidal current, ξ = π2/8 = 1.23. The above equation
indicates that when the charging period 4T is indefinitely
long, in theory, the energy dissipation is reduced to zero. This
is called an adiabatic switching [1].

III. SWITCHED CAPACITOR REGENERATOR

A. Concept

The switched capacitor regenerator (SCR) was first pro-
posed by L. Svensson and J. G. Koller [1]. This regenerator
uses a source voltage and N − 1 capacitors, so that an N -
step waveform is created and the charging energy is reduced
to 1/N . Figure 3 shows the switched capacitor regenerator
used in the analysis (N = 4). The regenerator consists of
a voltage source, five pass transistors that have input signals
from Clk0 to Clk4, three tank capacitors C1, C2, and C3, and
load capacitor CL. Figure 4 depicts its operation. Transistors
are turned on as Clk0, Clk1, Clk2, Clk3, Clk4, Clk3, Clk2,
Clk1, Clk0. This is done repeatedly and the output voltage
Vout becomes a step waveform.

With i running from 1 to N , a load capacitor is switched
from one voltage source to the nest. It is clearly seen from the
V –Q diagram as shown in Fig. 5 that energy dissipated per
cycle is

W = qVdd =
CVdd

2

N
. (5)

Since the voltage source are free from dissipation, except for
the N -th source, they can be represented by capacitors with
high capacitances (such as C1 in Fig. 3). This circuit has a
self-stabilizing property: the voltages across the capacitors C1

are set to required levels automatically. In Ref. [8], Nakata has
proved that each step of the output voltage of the regenerator
circuit with (N − 1) capacitors always settles to the voltage
of

i

N
· V (i = 0, 1, 2, · · · , N) (6)

regardless of the initial condition, in the case of Cn � CL

where Cn is the tank capacitor. However, the tank capacitor Cn

cannot be immoderately increased as capacitor size is affected
by the chip die.

In the next subsection, we will explain an equivalent circuit
model of the SCR, and then discuss the design optimization
of the capacitance ratio.

Clk3 Clk2 Clk1 Clk0

C3 C2 C1

Clk4

Vdd

CL

Vout

Fig. 3. Switched Capacitor Re-generator (SCR).
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Fig. 4. Output waveform of SCR.

B. Theoretical Analysis

The switching behavior of the NMOS transistor can be
generalized by examining the parastic capacitances and resist-
ances, and so we consider the NMOS switch shown in Fig. 6
with the equivalent digital model [12]. Note that the effective
input and output capacitances of the NMOS are Cin = 3

2
Cox

and Cout = Cox, respectively. We then can draw the equivalent
circuit of Fig. 7, by using the equivalent digital model of the
NMOS.

At first, we consider the voltage on a capacitance C1. An
electric charge in C1 can be determined from the equivalent

0 Q

V

Vdd

W=CVdd
2/N

1
2

i

N

Fig. 5. V –Q diagram of SCR.
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Fig. 6. NMOS equivalent digital model.

circuit as follows:

Qt01 = C1V7 +
3

2
Cox(V7 − Vclk1)

+Cox(0 − VC10
) + Cox(0 − VC20

)

+Cox(0 − VC30
) + Cox(0 − Vdd), (7)

where VCxy (y = 1, 2, · · · , n) is voltage of the node capaci-
tance Cx (x = 1, 2, · · · , n), and then total capacitance Qt1

has

Qt1 = V1

(

CL +
5

2
Cox

)

+ C1V1

+
3

2
Cox(V1 − Vclk1) + Cox(V1 − VC21

)

+Cox(V1 − VC31
) + Cox(V1 − Vdd). (8)

Equations (7) and (8) follow from charge conservation,

V1 =
V7

(

3

2
Cox + C1

)

CL + 7Cox + C1

+
Cox(VC21

+ VC31
− VC10

− VC20
− VC30

)

CL + 7Cox + C1

. (9)

Cox is much smaller than CL (or Cn) and so the second term
in the above equation can be neglected as compared to the
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Fig. 7. SCR equivalent circuit.

first term. Finally, we have the following equation.

V1 =
3

2
CoxV7 + C1V7

CL + 7Cox + C1

'
C1V7

CL + 7Cox + C1

. (10)

From the above equation, we can see that a terminal voltage
V1 is not equal to V7. Of course, it is possible to get the
same voltage if C1 is much larger than CL, however, the tank
capacitor C1 cannot be immoderately increased as capacitor
size is affected by the chip die.

The other voltage conditions are also as follows:

V0 = 0, (11)

V2 =
V1(CL + Cox) + C2V6

CL + 7Cox + C2

, (12)

V3 =
V2(CL + Cox) + C3V5

CL + 7Cox + C3

, (13)

V4 = Vdd, (14)

V5 =
Vdd(CL + Cox) + C3V3

CL + 7Cox + C3

, (15)

V6 =
V5(CL + Cox) + C2V2

CL + 7Cox + C2

, (16)

V7 =
V6(CL + Cox) + C1V1

CL + 7Cox + C1

. (17)

From equations (12) and (16), (13) and (15), we can also see
that the terminal voltages V2 and V6 (or V3 and V5) are not
equal.

C. Comparison of Analysis and Simulation Results
In order to compare the analysis with simulation results, the

SCR was simulated in a 1.2 µm CMOS n-well technology

provided by On-Semi conductor. The transistor size W/L
is 5.0 µm/1.2 µm for both of the PMOS and the NMOS
transistors. Cox is calculated from SPICE parameters. The
tank and load capacitances are be implemented as poly-poly
capacitance.

Figure 8 shows the comparison of analysis with simulation
results. We show that the analytical results agree rather well
with the SPICE simulation results. From the viewpoint of
CMOS implementation, however, we think that Fig. 8(a) has
an optimized condition because of poly-poly capacitance.

IV. CONCLUSION

We have reported an analytical method of a power clock
generator based on a switched capacitor circuit which is
used in adiabatic logic. We have derived first an equivalent
circuit model of the switched capacitor circuit. Then, we have
discussed the design optimization of the capacitance ratio.
Finally, we show that the analytical results agree rather well
with the SPICE simulation results. From the viewpoint of
1.2µm CMOS implementation, the capacitance ratio CL : Cn

has been set at 0.1 : 1.0.
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