Identification of Contact Conditions and Uncertainty of the Estimates

正 山田貴孝(名工大) 正 毛利哲也(岐阜大) 〇 下坂京平(名工大)

正 三村宣治(新潟大) 正 舟橋康行(中京大)

Takayoshi YAMADA, Nagoya Institute of Technology, Tetsuya MOURI, Gifu University,

Kyouhei SHIMOSAKA, Nagoya Institute of Technology, Nobuharu MIMURA, Niigata University, Yasuyuki FUNAHASHI, Chukyo University

Key Words: Contact Conditions, Active Sensing, Contact Wrench, Uncertainty, Robot

1. はじめに

ロボットが人間の代わりに高度な作業を行うには、人間が 持つ手先の器用さの実現が不可欠である.とりわけ接触を伴 う組立作業などにおいては接触状態を検出し、それに応じた 制御が必要となる.著者らは文献(1)でアクティブセンシング を用いて、ノイズを含む力覚情報からロボットの接触状態 (接触点位置,接触力,接触の種類)を同定する方法を提案 した.推定値にはノイズの影響による誤差が含まれるため、 その信頼性を評価することは重要な問題である.

本論文では, 推定値の信頼性を評価・表現することを目的 とし, 不確かさの概念を用いる. 数値例を用いて本手法の有 効性を検証する.

2. 接触状態の同定

接触状態の同定に関する基礎理論を以下に述べる.詳細は 文献(1)を参照されたい.

2.1 記号

Fig.1 のようにロボットハンドにより把持された物体が外 部環境と接触している状態を考える.図中のoはセンサ原点, cは接触点, Σ_o はセンサ座標系, Σ_c は接触点座標系, r_c は 接触点位置, f_o , n_o は計測力・計測モーメント, f_c , n_c は接 触力・接触モーメントを示している.

Fig.1 Interaction between a grasped object and an external environment

2.2 仮定

対象物は外部環境に摩擦のある点接触、ソフトフィンガ接触、線接触、面接触で接触する. この4 種類は接触モーメント n_c の自由度に特徴を持つ. 接触点位置 r_c では滑りが生じない. f_o , n_o はそれぞれノイズ ε_{fo} , ε_{no} を含む.

2.3 接触状態の同定

Fig.1 より以下の力とモーメントの釣り合い方程式を得る.
$$n_o = r_c \times f_c + n_c$$
, $f_o = f_c$ (1)

未知量,既知量を明確にするため*A*:=[−*f_o×],<i>b*:=*n_o*,*x*:=*r_c*とおき,偏差力を考慮すると次の関係式を得る.

$$\boldsymbol{b}_i = A_i \boldsymbol{x} + \overline{\boldsymbol{n}}_{ci} \tag{2}$$

ただし、 $\overline{\bullet}$ は偏差力を表し、添字iはi回目のセンシングデ ータである.接触点位置x,接触モーメントvの推定値を次

$$\hat{\boldsymbol{x}}(k) \coloneqq \left(\frac{1}{k} \sum_{i=1}^{k} \overline{A}_{i}^{T} \overline{A}_{i}\right)^{-1} \left(\frac{1}{k} \sum_{i=1}^{k} \overline{A}_{i}^{T} \overline{\boldsymbol{b}}_{i}\right)$$
(3)

$$\hat{\overline{\boldsymbol{v}}}_{i}(k) \coloneqq \overline{\boldsymbol{b}}_{i} - \overline{A}_{i} \hat{\boldsymbol{x}}(k) \tag{4}$$

接触モーメントの共分散行列を N(k) とおく.

$$N(k) := \frac{1}{k} \sum_{i=1}^{k} \hat{\bar{\mathbf{v}}}_{i}(k) \hat{\bar{\mathbf{v}}}_{i}(k)^{T} \in \Re^{3 \times 3}$$
(5)

式(5)の固有値 $\mu_1, \mu_2, \mu_3(\mu_1 \ge \mu_2 \ge \mu_3)$ により,接触の種類を 判別する.また,対応する固有ベクトルで法線方向,接触線 方向を推定する.

2.4 接触の種類を考慮したパラメタの再同定

接触の種類がソフトフィンガ接触もしくは線接触と判定 された場合,より正確なパラメタに修正するため, \overline{n}_{ci} の特 徴を考慮して評価関数を式(6)と設定する.式(6)を最小とす るパラメタを反復計算により再同定する.

$$J_{type,k}(\boldsymbol{x}) \coloneqq \frac{1}{k} \sum_{i=1}^{k} \left\| \overline{\boldsymbol{b}}_{i} - (\overline{A}_{i}\boldsymbol{x} + \overline{\boldsymbol{n}}_{ci}) \right\|^{2}$$
(6)

3. 不確かさの評価

式(6)の評価関数の大きさを不確かさ⁽²⁾の量として利用し, 接触点位置,法線方向,接触線方向の推定値の信頼性を評価 する.

3.1 点接触の不確かさ

点接触の評価関数は次のように表される.

$$J_{p,k}(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} \left\| \overline{b}_i - \overline{A}_i \mathbf{x} \right\|^2$$
$$= \mathbf{x}^T P_k \mathbf{x} - 2\mathbf{q}_k^T \mathbf{x} + r_k$$
$$= (\mathbf{x} - \hat{\mathbf{x}})^T P_k (\mathbf{x} - \hat{\mathbf{x}}) + s_k$$
(7)

$$s_k \coloneqq r_k - \boldsymbol{q}_k^T \boldsymbol{P}_k^{-1} \boldsymbol{q}_k \tag{8}$$

ただし, $P_k \in \mathfrak{N}^{3\times 3}, q_k \in \mathfrak{N}^3, r_k \in \mathfrak{N}$ である. s_k はノイズの影響 による誤差に相当する. 不確かさを評価するため

$$J_k(\mathbf{x}) < (\alpha + 1)J_k(\hat{\mathbf{x}}) \tag{9}$$

を満たす x の範囲を求める. 式(9)は

$$(\boldsymbol{x} - \hat{\boldsymbol{x}})^T T_k^{-1} (\boldsymbol{x} - \hat{\boldsymbol{x}}) < 1$$
(10)

$$T_k \coloneqq \alpha s_k P_k^{-1} \tag{11}$$

と変形できる.式(10)を満たすxの集合は、 \Re^3 空間内で楕 円体を構成し、その中心は推定値である.また α は楕円体の 大きさを決める閾値で適当な正定数である.

3.2 ソフトフィンガ接触の不確かさ

と

ソフトフィンガ接触の場合,接触モーメント \overline{n}_{ci} は

$$\overline{\boldsymbol{n}}_{ci} = \boldsymbol{r}_{z}\overline{\boldsymbol{n}}_{czi}' = \begin{bmatrix} \boldsymbol{r}_{z1} & \boldsymbol{r}_{z2} & \boldsymbol{r}_{z3} \end{bmatrix}^{T}\overline{\boldsymbol{n}}_{czi}'$$
(12)
なる。ただし、 **r** は単位法線ベクトルである。式(12)は

$$\overline{\boldsymbol{n}}_{ci} = \begin{cases} [1 \quad y_1 \quad y_2]^T \overline{z}_i & \text{for } r_{z\max} = |r_{z1}| \\ [y_2 \quad 1 \quad y_1]^T \overline{z}_i & \text{for } r_{z\max} = |r_{z2}| \\ [y_1 \quad y_2 \quad 1]^T \overline{z}_i & \text{for } r_{z\max} = |r_{z3}| \end{cases}$$
(13)

の3通りに分類できる.例えば $r_{zmax} = |r_{z1}|$ の場合にはx, y_1, y_2 を基準にすることで,式(6)は次の線形方程式に変換で きる⁽³⁾.

$$J_{s,k}(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} \left\| \begin{bmatrix} \overline{b}_{1i} - \overline{z}_i \\ \overline{b}_{2i} \\ \overline{b}_{3i} \end{bmatrix} - \begin{bmatrix} \overline{A}_{1i} & 0 & 0 \\ \overline{A}_{2i} & \overline{z}_i & 0 \\ \overline{A}_{3i} & 0 & \overline{z}_i \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ y_1 \\ y_2 \end{bmatrix} \right\|^2$$
(14)

 z_i には 2.4 節の推定値を用いて、点接触と同様の手順で不確 かさを評価する.このとき $P_k \in \Re^{5\times 5}, q_k \in \Re^5, r_k \in \Re$ である. 3.3 線接触の不確かさ

線接触の評価関数 $J_{l,k}(\mathbf{x})$ も非線形となる⁽³⁾が、ソフトフィンガ接触の場合と同様の手順で不確かさを評価する.

4. 数值例

数値例により本手法の有効性を示す.なお,本数値例では 3節に示した種類別の評価関数で得られる不確かさの特徴に 注目するため,2.3節の接触の種類の判別は行わない.

接触点位置を $\mathbf{x} = [1,1,1]^T$,法線方向を $\mathbf{r}_z = [0,0,1]^T$,接触線 方向を $\mathbf{r}_x = [1,0,0]^T$, ノイズの共分散を $\operatorname{Cov}[\varepsilon_{fo}] = \operatorname{diag}[0.10^2, 0.15^2, 0.20^2]^T$, $\operatorname{Cov}[\varepsilon_{no}] = \operatorname{diag}[0.15^2, 0.15^2, 0.15^2]^T$ と設定し, 仮定に基づき(a)点接触, (b)ソフトフィンガ接触, (c)線接触, (d)面接触のデータを作成する.

接触データ(a)~(d)について、各評価関数 $J_{type,k}$ で計算した接触点位置、法線方向、接触線方向の推定値と不確かさを Fig.2~Fig.6 に示す. $\alpha = 1$ とした.実線は推定値を、破線は 不確かさの幅を表す.推定値の要素数は点接触で3個、それ 以外の接触では5 個であるが、誌面の都合で一部を示す. Fig.2 は $J_{p,k}$ を用いた場合の x_1 の不確かさを、Fig.3、Fig.4 は $J_{s,k}$ を用いた場合の x_1 , y_2 の不確かさを、Fig.5、Fig.6 は $J_{l,k}$ を用いた場合の x_1 , y_2 の不確かさを示す.

ある評価関数について接触点位置の不確かさを見ると, デ ータ(a)のときに一番小さく, データ(d)のときに一番大きく なっている.これはデータ(a)からデータ(d)になるにつれて 接触モーメント \overline{n}_{ci} の自由度が大きくなり,式(7)の s_k の値が 大きくなるためである.あるデータについて接触点位置の不 確かさを見ると, 評価関数が $J_{p,k}$, $J_{s,k}$, $J_{l,k}$ になるにつれて小 さくなっている.これは最小化したときの評価関数の間に $J_{p,k\min} \ge J_{s,k\min} \ge J_{l,k\min}$ の関係がある, すなわち s_k の値が 小さくなるためである.特に, Fig.2(b)に比較し Fig.3(b)の不 確かさ, Fig.2(c)に比較し Fig.5(c)の不確かさは一段と小さく なっている.これは, 対応する接触モーメント成分のパラメ タ (例えば式(13)) が評価関数に追加されるためである.

Fig.4 は法線方向の一成分を示しており、データ(b)のとき に不確かさが小さくなっている.これは、データ(a)では s_k の 値は小さいが P_k の条件数(= $\sigma_{max}(P_k)/\sigma_{min}(P_k)$)が大きく解 が存在しないためであり、データ(c)、(d)では P_k の条件数は小 さいが s_k が大きく余分な方向の接触モーメント成分が含ま れているためである。データ(b)では P_k の条件数と s_k は共に 小さい.Fig.6 においても同様のことが言え、データ(c)のと きに接触線方向の不確かさが小さくなっている.

データ(d)については未知パラメタを一意に決めることは できないので,不確かさは常に大きい.

5. おわりに

本論文では,最小二乗法を用いて推定した接触点位置,法 線方向,接触線方向について,そのときの評価関数の大きさ を不確かさの量として利用し,推定値の信頼性を評価した. 数値例で本手法の有効性を確認し,次の知見を得た.ある接

触データで $J_{p,k}, J_{s,k}, J_{l,k}$ の順に見ていくと真の接触の種類 を表す評価関数のときに位置と方向の不確かさが共に極端 に小さくなる.

今後の課題として, 接触状態が遷移する場合の不確かさの 評価, 不確かさを用いての接触状態の判定, 実験による有効 性の検証などが挙げられる.

参考文献

- (1) 毛利哲也,山田貴孝,三村宣治,舟橋康行.接触モーメントの ノイズを考慮した接触状態の同定法,機論,66-648, C(2000), 2685-2692.
- (2) 菊植亮,吉川恒夫.ロボットのためのインピーダンス知覚,日本ロボット学会誌,21-1,(2003),103-108.
- (3) 山田貴孝, 毛利哲也, 三村宣治, 舟橋康行. ノイズを考慮した 接触パラメータの同定, 機論, 64-618, C(1998), 584-589.