Identification of Contact Conditions from Position and Velocity Information

Tetsuya MOURI*, Takayoshi YAMADA**, Ayako IWAI**, Nobuharu MIMURA***, Yasuyuki FUNAHASHI**

*Dept. of Human Information Systems, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
**Dept. of Mech. Eng., Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
***Dept. of Bio cybernetics, Niigata University, Ninomachi, Ikarashi, Niigata 950-2181, Japan

tmouri@vsl.gifu-u.ac.jp, yamat@eine.mech.nitech.ac.jp

Abstract

This paper proposes an algorithm for identification of contact conditions between a grasped object and external environment from position and velocity information of a robot hand. The contact conditions mean contact type, contact position, and contact force. Soft finger contact type, line contact type, and plane contact type are considered in addition to point contact type. The contact type is identified by rank of the matrix that places estimated angular velocity of the object at contact point. Contact position, contact normal and contact line are also estimated. This method has the following merits as compared with the method using 6-axes force information described in the previous paper. The identification problem is reduced to the problem of solving linear equations. The required number of active sensing motion is less.

Key Words: Identification, Contact Conditions, Active Sensing, Position and Velocity Information, Hand, Grasped object and external environment

1. Introduction

When a grasped object is in contact with external environment as shown in Fig. 1, it is required to identify contact conditions prior to performing assembly tasks. Human can easily identify current contact conditions by using information from one's sensitive hand and accomplish the tasks. By changing contact type, one can make a fine positioning and assembling task. Therefore, it is necessary for realization of human action on the robot to identify and control the contact conditions that mean contact types, contact position, and contact forces.

There are various researches about contact conditions using force and/or velocity information. Hyde et al. [4] and Akella et al. [1] proposed a method for controlling contact transition from free motion to constrained motion. Dutre et al. [3] identified geometrical uncertainties and detected topological transitions in contact situations. Newman et al. [15] investigated a method of interpretation of force and moment data for peg-in-hole assembly. Tsujimura et al. [18], Kaneko et al. [5] and Ueno et al. [19] detected contact position by probe, active antenna and multiple active antennas, respectively. Bicchi et al. [2] identified contact position and contact normal direction in case of point and soft finger contact types. Also, Zhou et al. [20] localized contact in case of point contact type and inferred accuracy of the proposed approach. Salisbury et al. [17] proposed a method for identification of contact position on the sensor surface using multiple active sensing. Nagata et al. [14] and Kitagaki et al. [7] proposed methods for identifying the contact position of the unknown object by using active sensing. In these methods, however, it was assumed that the contact condition is of point contact type with friction. Oussalah [16] proposed a method for identifying the contact normal by force and velocity without friction. Muto and Shimokura [13] detected contact position and contact normal by using force and velocity information complementarily. Kikuuwe and Yoshikawa [6] described an algorithm for robot perception of impedance. This method

![Fig. 1: Interaction between a grasped object and external environment](image)
estimates mechanical impedance of external environment during arbitrary manipulation. Unknown parameters such as elasticity, viscosity, inertia matrices, and contact position are roughly estimated. However, these works did not identify contact type such as soft finger, line, and plane contact type.

The authors [9]-[11] discussed identification of contact conditions including soft finger contact type, line contact type and plane contact type in addition to the point contact type. We proposed an algorithm for identification of contact conditions from contaminated data of contact force and moment. In this algorithm, contact position and contact moment are estimated by the least squares method, and then contact type is identified by eigenvalues of covariance matrix of estimated contact moment.

Human hand can measure not only 6-axes force information but also position and velocity information. However, Ref. [9]-[11] did not utilize this information effectively. For this reason, this paper treats an identification problem of contact conditions from position and velocity information. We direct our attention to the difference of angular velocity at contact point between a grasped object and external environment. This constraint is dual to the constraint of moment generated at contact point. From this constraint, four contact types can be classified and contact position can be estimated. Moreover, the directions of contact normal and contact line are also estimated.

2. Problem Formulation
2.1. Notations
Suppose that a grasped object is in contact with external environment, as shown in Fig. 1. We define the following symbols shown in Fig. 2.

\[\Sigma_b \] : base coordinate frame.
\[\Sigma_c \] : contact coordinate frame fixed at c on the external environment.
\[\Sigma_e \] : object (sensor, or hand) coordinate frame fixed at o.
\[\Sigma_{ec} \] : contact coordinate frame fixed at c on the object. The orientation of this frame is the same as that of \[\Sigma_o \].
\[\Sigma_{e'} \] : contact coordinate frame fixed at c on the object. The initial orientation of this frame is the same as that of \[\Sigma_e \]. This frame is classified by contact type.
\[a_{rc} \] : contact position with respect to \[\Sigma_o \].

The frames \[\Sigma_o \], \[\Sigma_e \], and \[\Sigma_{ec} \] are already defined in Ref. [11]. The frames \[\Sigma_b \] and \[\Sigma_e \] are newly defined in this paper, because relative velocity between the object and external environment will be derived in order to classify contact types. The position of \[\Sigma_e \] is unknown, then \[a_{rc} \] is also unknown. The configuration of \[\Sigma_{e'} \] and \[\Sigma_e \] are unknown. Note that the orientation of \[\Sigma_{e'} \] is different from that of \[\Sigma_e \]. In this paper, the term of configuration means position and orientation.

2.2. Homogeneous Transform Matrix
The configuration of \[\Sigma_o \] with respect to \[\Sigma_b \] is denoted by a homogeneous transform matrix \[bT_o \] :

\[
\begin{bmatrix}
 bR_o(t_i) & b p_{b,o}(t_i) \\
 0 & 1
\end{bmatrix},
\]

where \[bT_o \] is a position vector from the origin of \[\Sigma_b \] to the origin of \[\Sigma_o \] with respect to \[\Sigma_b \]. The letter \[bR_o \] is a rotation matrix of \[\Sigma_o \] with respect to \[\Sigma_b \]. The letter \[t_i \] means time at the i-th sample. In a similar way, the following matrices are utilized.

\[
\begin{bmatrix}
 cR_e & c p_{e,c}(t_i) \\
 0 & 1
\end{bmatrix},
\]

\[
\begin{bmatrix}
 cR_o & c p_{e,o}(t_i) \\
 0 & 1
\end{bmatrix},
\]

Since \[bT_o(t_i) \] and \[cT_e(t_i) \] change due to the active sensing motion, these depend on time. The vectors \[c p_{e,c}(t_i) \] and \[c p_{e,o} \] become zero, because position of the origin of frames \[\Sigma_{e'} \], \[\Sigma_{e'} \], and \[\Sigma_e \] are the same as each other. The rotation matrix \[cR_o \] becomes the \(3 \times 3 \) identity matrix \[I_3 \], because the orientation of \[\Sigma_{e'} \] and \[\Sigma_e \] are the same. The position vector \[c p_{e,o} \] is expressed by \[c p_{e,o} = -a_{rc} \].

Fig.2: Coordinate frames
2.3. Assumptions

We make the following assumptions for clarification of discussions.

(A1) An object is firmly grasped and manipulated by a robot hand.

(A2) The configuration \(bT_o(t_i) \) and the time derivative \(b\dot{T}_o(t_i) \) are known and noiseless.

(A3) The grasped object is in contact with external environment through point, soft finger, line, or plane (face) contact type with friction. The contact position and type are unknown.

(A4) The contact type remains unchanged during identification process.

(A5) No slip occurs at the contact position \(c \).

Assumption (A2) means that, for an example, \(bT_o(t_i) \) and \(b\dot{T}_o(t_i) \) can be measured from angle and velocity of joint sensors mounted on the robot arm. Assumption (A3) is illustrated in Fig. 3. Contact types are classified by DOF of contact [8]. DOF is denoted by \(m \).

- \(m = 0 \): Plane contact type with friction
- \(m = 1 \): Line contact type with friction.
- \(m = 3 \): Point contact type with friction.

Assumption (A5) implies that contact force is generated inside the friction cone.

2.4. Constraint of angular velocity

We consider 4 contact types described in Assumption (A3). These contact types can be characterized by using a coordinate frame \(\Sigma_e \) whose \(z \) axis is aligned with the normal at the contact point on the external environment. Added to this, in case of line contact type, \(x \) axis of \(\Sigma_e \) is aligned with contact line. The angular velocity of the object at the contact point with respect to the frame \(\Sigma_e \) is denoted by \(\omega = [\omega_x, \omega_y, \omega_z]^T \) and is constrained by

\[
\begin{align*}
\text{Point contact:} & \quad \omega_z = 0 \\
\text{Soft finger contact:} & \quad \omega_x = 0 \\
\text{Line contact:} & \quad \omega_y = 0 \\
\text{Plane contact:} & \quad \omega_x = \omega_y = \omega_z = 0
\end{align*}
\]

Note that the constraint of \(\omega \) is dual to that of contact moment. This means that if moment around a certain axis can be applied then angular velocity around this axis cannot be generated and if moment cannot be applied, angular velocity can be generated.

3. Identification of contact conditions

3.1. Fundamental equations

The configuration of \(o\Sigma \) with respect to \(b\Sigma \) is obtained by

\[
\begin{align*}
{bT}_o(t_i) = {cT}_o(t_i) \{cT}_e(t_i) \{cT}_e \{bT}_o .
\end{align*}
\]

The time derivative of Eq. (4) is provided by

\[
\begin{align*}
{b\dot{T}}_o(t_i) = {c\dot{T}}_o(t_i) \{c\dot{T}}_e(t_i) \{c\dot{T}}_e \{bT}_o .
\end{align*}
\]

where \({c\dot{T}}_e(t_i) \) is the spatial velocity of \(\Sigma_e \) with respect to \(\Sigma_o \) [12], which is represented by

\[
\begin{align*}
{c\dot{T}}_e(t_i) = \{c\dot{T}}_e(t_i) \{cT}_e(t_i) \{cT}_e(t_i) \{cT}_e(t_i) \{cT}_e(t_i) .
\end{align*}
\]

The matrix \(\{c\Omega}_{x^*} \) is a skew symmetric matrix:

\[
\begin{align*}
{c\Omega}_{x^*} = & \begin{bmatrix}
0 & -\omega_{x^*y}(t_i) & -\omega_{x^*z}(t_i) \\
\omega_{x^*y}(t_i) & 0 & -\omega_{x^*z}(t_i) \\
-\omega_{x^*z}(t_i) & \omega_{x^*z}(t_i) & 0
\end{bmatrix} .
\end{align*}
\]

From Eq. (5), we have the following two equations:

\[
\begin{align*}
{b\dot{R}}_o(t_i) = & \{b{R}}_o(t_i) \{b{\Omega}}_{x^*}(t_i) \{b{R}}_o(t_i) \{b{R}}_o(t_i) .
\end{align*}
\]

We will identify contact type and contact position by Eqs. (8) and (9), respectively.

3.2. Contact type

Contact types are classified from Eq. (8). A skew symmetric matrix of relative velocity from \(\Sigma_o \) to \(\Sigma_e \) is given by
Since the orientation of Σ_o is the same as that of Σ_e, we have

\[b_R_i(t_i) = b_R_o(t_i) \]

(11)

From Eqs. (8), (10), and (11), we obtain

\[b_\Omega_{e,c}'(t_i) = [b_\Omega_o](t_i) \{ b_\Omega_e(t_i) \}^{-1}. \]

(12)

Transforming Eq. (12) to a three dimensional vector yields

\[b_\omega_{e,c}'(t_i) = [b_\omega_o](t_i) \{ b_\omega_e(t_i) \}^{-1} \] \[\bullet \nu \]

(13)

where \(\bullet \nu \) represents a transform from a skew symmetric matrix \(b_\omega_c(t_i) \) to a 3 dimensional vector. We define the matrix \(M \) that places \(b_\omega_{e,c}'(t_i) \) as the following form:

\[M := [b_\omega_{e,c}'(t_i)] b_\omega_{e,c}'(t_i) \cdots b_\omega_{e,c}'(t_i)] \in \mathbb{R}^{3k}, \]

(14)

Since \(b_\omega_{e,c}'(t_i) \) is written as

\[b_\omega_{e,c}'(t_i) = [b_\omega_o(t_i) \{ b_\omega_e(t_i) \}^{-1}], \]

(15)

and the matrix \(b_\omega_e(t_i) \) is unknown but nonsingular, we have

\[\text{rank} M = \text{rank} \{ b_\omega_{e,c}'(t_i) \} - b_\omega_{e,c}'(t_i) \cdots b_\omega_{e,c}'(t_i) \}. \]

(16)

where \(b_\omega_{e,c}'(t_i) \) is constrained by Eq. (3), then rank of \(M \) becomes

\[\text{rank} M = \begin{cases} 3 & \text{for Point contact} \\ 2 & \text{for Soft finger contact} \\ 1 & \text{for Line contact} \\ 0 & \text{for Plane contact} \end{cases} \]

(17)

Therefore, contact types are classified by analyzing rank of \(M \). From the above discussion, 3 times of active sensing motion are required in order to judge which contact type happens.

3.3. Estimation of direction of contact normal and contact line

The direction of contact normal or contact line must be estimated if the contact type is judged as soft finger contact or line contact type by the method described in Section 3.2

3.3.1. Direction of contact normal

In case of soft finger contact type, Eq. (15) becomes

\[b_\omega_{e,c}'(t_i) = [b_\omega_e(t_i) \{ b_\omega_e(t_i) \}^{-1} [b_\omega_e(t_i) \{ b_\omega_e(t_i) \}^{-1} \nu = \nu
\]

where

\[b_\omega_{e,c}'(t_i) = [b_\omega_e(t_i) \{ b_\omega_e(t_i) \}^{-1} [b_\omega_e(t_i) \{ b_\omega_e(t_i) \}^{-1} \nu = \nu
\]

(18)

The direction of the normal vector is aligned with the direction which cannot generate angular velocity, that is, the direction is tangent to both \(b_\omega_{e,c}'(t_i) \) and \(b_\omega_{e,c}'(t_i) \nu \). If we use independent two vectors \(b_\omega_{e,c}'(t_i) \) and \(b_\omega_{e,c}'(t_i) \nu \), the direction of contact normal \(n \) is calculated by

\[n = [b_\omega_{e,c}'(t_i) \times b_\omega_{e,c}'(t_i)] \times [b_\omega_{e,c}'(t_i) \times b_\omega_{e,c}'(t_i)] \]

(19)

3.3.2. Direction of contact line

In case of line contact type, Eq. (15) becomes

\[b_\omega_{e,c}'(t_i) = [b_\omega_e(t_i) \{ b_\omega_e(t_i) \}^{-1} \nu = \nu
\]

In this case, the direction of angular velocity is that of contact line \(\nu \) which is obtained by

\[\nu = [b_\omega_{e,c}'(t_i)] \times [b_\omega_{e,c}'(t_i)] \]

(20)

3.4. Estimation of contact position

The contact position will be estimated by using Eq. (9). From Assumption (A2), although \(b_{\omega_{e,c}}(t_i) \) and \(b_{\omega_{e,c}}(t_i) \nu \) are known, \(b_{\omega_{e,c}}(t_i) \) is unknown. By using

\[A_i := [b_{\omega_e}(t_i)], \quad x := [b_{\omega_{e,c}}(t_i)] \]

(21)

Eq. (9) becomes

\[A_i x = b_i. \]

(22)

Eq. (22) has three unknown parameters and three equations. However, the matrix \(A_i \) has a skew symmetric matrix \(\omega_{e,c}'(t_i) \), then \(A_i \) is singular.

\[\text{rank} A_i = \text{rank} \omega_{e,c}'(t_i) \leq 2. \]

(23)

The contact position cannot be estimated by 1 time of active sensing motion. From several times of active sensing motion, we obtain

\[A x = b \]

(24)

where

\[A := \begin{bmatrix} A_1 \\ \vdots \\ A_k \end{bmatrix} \in \mathbb{R}^{k \times 3}, \quad b := \begin{bmatrix} b_1 \\ \vdots \\ b_k \end{bmatrix} \in \mathbb{R}^k \]

3.4.1. Case of Point or Soft finger contact type

In case of point contact type, any angular velocity occurs at the contact point. In case of soft finger contact type, angular velocity around \(x \) and \(y \) axes can be generated. Hence, we have

\[\text{rank} A = 3 \text{ for } i \geq 2. \]

(25)
Contact position can be estimated uniquely.

3.4.2. Case of Line contact type

In case of line contact type, motion is constrained around x axis of the frame Σ_e, then

$$\text{rank } A = 2$$ (26)

(refer to Appendix). Eliminating Eq. (24) yields the following form:

$$\begin{bmatrix} a_1^y \\ a_2^y \\ 0 \end{bmatrix} x = \begin{bmatrix} b_1 \\ b_2 \\ 0 \end{bmatrix},$$ (27)

where $a_1, a_2 \in \mathbb{R}^3$ and $b_1, b_2 \in \mathbb{R}$ are appropriate values. Hence, the contact position can be estimated as

$$\hat{x} = [a_1, a_2]^{-1}[b_1, b_2] + \alpha(a_1 \times a_2),$$ (28)

where α takes any value. In case of line contact type, there exits a free parameter along contact line.

3.4.3. Plane (face) contact type

In case of plane contact type,

$$\text{rank } A = 0$$ (29)

because of $q_{\Sigma_e}^R(t_i) = 0$. Hence, contact position cannot be estimated.

3.5. Algorithm

Based on Section 3.3 and 3.4, we propose an algorithm for identification of contact conditions from position and velocity information.

Step 1: Command 3 times of active sensing motion and measure the configuration $p_{b,o}(t_i), R_{b}(t_i)$ and the time derivative $\dot{p}_{b,o}(t_i), \dot{R}_{b}(t_i)$.

Step 2: Calculate $q_{\Sigma_e}^R(t_i)$ by Eq. (13).

Step 3: Generate M by Eq. (14).

Step 4: Judge which contact type happens by using the rank of M.

Step 5: If it is judged as Point contact type, then calculate \hat{r}_c by Section 3.4.1.

Step 6: If it is judged as Soft finger contact type, then calculate the direction of normal by Eq. (19) and \hat{r}_c by Section 3.4.1.

Step 7: If it is judged as Line contact type, then calculate the direction of contact line by Eq. (21) and the contact position \hat{r}_c by Section 3.4.2.

In case of plane contact type, unknown parameters cannot be estimated, but contact type can be judged. This algorithm can estimate not only contact type and contact position but also the direction of contact normal and contact line.

4. Conclusions

This paper has proposed an algorithm for identification of contact conditions from position and velocity information. The contributions of this paper are as follows:

1. It is shown that angular velocity at contact point with respect to the base frame can be obtained by measuring position and velocity information of the robot hand. From rank of the matrix that places the angular velocity, the four contact types can be judged. We make it clear that three times of active sensing motion are required in order to the classification.

2. The direction of contact normal or contact line has been derived for soft finger contact type or line contact type, respectively.

3. It is shown that contact position is estimated uniquely for point and soft finger contact type, but it is determined with one degree of freedom for line contact type.

It has been analytically shown that the contact conditions can be obtained from position and velocity information. Since our proposed method uses position and velocity information only, it cannot estimate contact force and moment but has the following merits: (1) The identification of contact conditions is reduced to the problem of solving linear equations. (2) The required number of active sensing motion is less than that of the method from force and moment information.

In the future work, we treat the case where the data are contaminated with noise. We will investigate sensor fusion using velocity information described in this paper and force information treated in Ref. [11] in order to obtain more accurate and rapid estimates.

Appendix

In case of line contact type, the matrix $\hat{r}_c(t_i)$ is represented as

$$\hat{r}_c(t_i) = R_x(\theta_i),$$ (30)

where $R_x(\bullet)$ is a rotation matrix around x axis:

$$R_x(\bullet) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\bullet) & -\sin(\bullet) \\ 0 & \sin(\bullet) & \cos(\bullet) \end{bmatrix}$$

and θ_i implies relative angle from Σ_v to Σ_c at time.
\[t_i \]. Hence, Eq. (8) becomes

\[
A_i = \mathbf{\omega}_{\theta, \phi} (t_i) \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\sin \theta_i & -\cos \theta_i \\ 0 & \cos \theta_i & -\sin \theta_i \end{bmatrix} (\mathbf{c} R_e) \tag{31}
\]

From Eq. (21), the direction of contact line, \(b R_{ex} \), is known, then the estimated value of \(b R_e \) can be written by

\[
\hat{b} \mathbf{R}_e = \begin{bmatrix} b R_{ex} \cos \phi & b R_{ex} \sin \phi & b R_{ex} \cos \phi \end{bmatrix}
\]

\[
= b \mathbf{R}_e R_e (\phi)
\]

where \(\phi \) is an arbitrary value. From Eqs. (31) and (32), we have

\[
(\mathbf{b} \hat{R}_e)^T (A_j) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\sin (\theta_j - \phi) & -\cos (\theta_j - \phi) \\ 0 & \cos (\theta_j - \phi) & -\sin (\theta_j - \phi) \end{bmatrix}
\]

\[
(\mathbf{c} R_e) = \begin{bmatrix} 0 \\ A_j \end{bmatrix}
\]

and

\[
(\mathbf{b} \hat{R}_e)^T (b_j) = -b \mathbf{R}_e R_e (\phi)
\]

where the matrix \(A_j \in \mathbb{R}^{5 \times 3} \) and the vector \(\mathbf{b}_j \in \mathbb{R}^2 \) are appropriate values. In Eq. (33), the data at time \(t_i \) is dependent of that of \(t_j \), because

\[
(\mathbf{b} \hat{R}_e)^T (A_j) = \Theta_{ij} (\mathbf{b} \hat{R}_e)^T (A_j)
\]

where

\[
\Theta_{ij} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\sin (\theta_j - \phi) & -\cos (\theta_j - \phi) \\ 0 & \cos (\theta_j - \phi) & -\sin (\theta_j - \phi) \end{bmatrix}
\]

Therefore, Eq. (24) can be eliminated to the form of Eq. (27).

References