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Abstract 

     We propose a new method for analyzing the stability 

of grasps. The characteristic points in this paper are to 

consider the curvature of both hand and object at contact 

points and the grasp with friction and frictionless contact. 

From this analysis, it is shown that the grasp using round 

fingers is more stable than using sharp fingers. Moreover, 

we establish the condition on the finger’s stiffness to 

stabilize the grasp with friction. It is proved that the 

required stiffness of fingers are decreased by considering 

the curvature. The stability analysis is greatly simplified 

by using potential energy of the grasp system and is of 

practical use. 

 

1. Introduction 
    

     The grasp stability of a robot hand is an important 

problem. The grasp system is required to maintain the 

contact state against any external disturbances applied to 

the object. 

     The stability of static grasp is analyzed by the 

concept of form-closure and force-closure grasps [1-5]. 

The form-closure grasp geometrically restricts the object 

by fingers of the hand, an object displacement due to 

external disturbances does not occur. So the form-closure 

grasp does not break. The force-closure grasp can generate 

any force and moment by finger forces only. So the grasp 

can resist any external disturbances, and be maintained. 

These types of grasp are stable and any displacement of 

the object does not occur in spite of external forces. 

     On the other hand, many investigations have been 

performed on the grasp stability allowing an object 

displacement due to external disturbances. These works 

discuss the stability from the viewpoint of either potential 

energy or restoring force by replacing the hand and object 

configuration with an elastic system. These works are 

classified into two categories whether each finger slides 

along the object surface or not. 

     Hanafusa and Asada [6] investigated fingertip 

positions for stabilizing frictionless grasps. It was shown 

that the grasp is in stable configuration when the potential 

energy of the grasp system is minimized. Nguyen [7] 

discussed the stability of the grasp at an equilibrium state 

when each finger’s stiffness is controlled. The potential 

energy was derived with the curvature of the object taken 

into consideration. It was shown that the grasp is in stable 

configuration if and only if the potential energy is locally 

minimum at the equilibrium state. It was also shown how 

the object’s curvature influences the grasp stability.  

     Kaneko et al. [8] analyzed planar grasps with 

friction, and gave the condition on finger’s stiffness to 

stabilize the grasp. Mimura and Funahashi [9] extended 

the planar grasps to spatial grasps. However, the influence 

of the curvature on the grasp stability is not investigated 

because the object is held by sharp fingers. 

     D. J. Montana [10,11] analyzed the grasp stability 

considering the curvatures of both the hand and the object. 

It is assumed that the object is grasped by two fingers, and 

the magnitude of each finger force exerted at contact point 

is constant. Howard and Kumar [12] studied the grasp 

stability from the viewpoint of restoring force. However, 

the analysis of forces generated at contact points is 

somewhat complex. 

     This paper analyzes the stability of planar grasps by 

considering the curvature of both object and fingers at 

contact points as shown in Fig. 1. The influences of the 

curvature on stability of the grasps with friction and 

frictionless point contact are investigated. First, fingers of 

the hand are replaced by elastic fingers whose curvature is 

taken into consideration, and a potential function of this 

grasping system is derived. Then the stability is evaluated 

by using the second-order partial derivatives of the 



 2 

potential function. Moreover, we analyze the condition on 

the finger’s stiffness to stabilize the grasp with friction. 

The stability analysis is greatly simplified by using 

potential energy of the grasp system and is of practical 

use. 
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Fig. 1 A planar grasp considering the curvature 

 

2. Stability of frictionless grasps 
    

2.1. Modeling of grasps 

     In this section, we discuss the grasp stability 

considering the curvature of an object and fingers when 

the fingers slide on the object surface without friction. 

Because of frictionless, each finger force is along the 

inward normal of object at contact point. 

     We define coordinate frames shown in Fig. 2. The 

origin of the object coordinate frame Σo  is fixed at 

arbitrary position on the object. The object is 

approximated by a circle at the contact point as shown in 

Fig. 2. The origin of the contact-point coordinate frame 

Σ i  is fixed at the center of curvature, and the axis xi  of 

Σ i  is along outward normal of object at contact point. 

The relative position of the origin of Σ i  with respect to 

Σo  is denoted by pi , the relative orientation of Σ i  with 

respect to Σo  is denoted by θ i . The radius of curvature 

of the object and the finger at i-th contact point is defined 

by Ri  and ri , respectively. If the object has convex arc 

at the i-th contact point as shown in Fig. 3(a), we have 

Ri > 0 . If the object has concave arc as shown in Fig. 3(b), 
we have Ri < 0 . The radius ri  is defined in a similar 

way. 
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Fig. 2  A grasp with frictionless point contact 
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(c) concave finger and convex object 

Fig. 3  Compression due to object displacement 

 

 

     In order to simplify the discussion, we make 

following assumptions. 

(2.1) Each finger is in a frictionless point contact with the 

object and has a virtual spring shown in Fig. 2. 

(2.2) The shapes of an object and each finger are known, 

and can be approximated by circles of the curvature, 

respectively. 

(2.3) The grasping system is in an equilibrium state 

initially, and contact points and contact forces are known. 

(2.4) Two dimensional grasp. 

     By setting virtual springs as assumption (2.1), we 

can derive potential energy of the grasp system. Since the 

shape of the object is represented by the circles of 

curvature up to second order exactly, the second-order 

partial derivatives of the potential function is exactly 

derived according to assumption (2.2) 

     We will derive the potential energy stored in the 

grasp system due to external disturbance and investigate 

grasp stability at the equilibrium state given by assumption 

(2.3). We consider the relation between object 

displacement and compression of virtual springs. In order 

to make this analysis clear, the relation between 

displacement in Σ i  and the compression is studied firstly, 

then the relation between displacement in Σo  and the 

compression is investigated. 
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2.2. Compression of virtual springs 

2.2.1. Contact-point Coordinate Frame 

     In this section, we will formulate the compression 

δ i  at the virtual spring ki  when infinitesimal translation 

( , )x yi i  and rotation ζ i  at the origin of Σ i  occur. 

Suppose that both the object and the i-th finger have 

convex arcs around the contact point as shown in Fig. 

3(a). 

     Let us define ( , )A Bi i
T  and ( , )a bi i

T  as the 

center position of the object’s and the i-th finger’s 

curvature around the i-th contact point respectively. From 

the definition of the i-th contact coordinate frame Σ i , we 

have 

 ( , ) ( , )A Bi i
T T= 0 0 ,  

 ( , ) ( , )a b R ri i
T

i i
T= + 0 . (1) 

With the displacement of ( x yi i i, ,ζ ), the virtual spring 

ki  is compressed. So we have 

 ( , ) ( , )A B x yi i
T

i i
T= , 

 ( , ) ( , )a b R ri i
T

i i i
T= + + δ 0 . (2)  

When the i-th finger maintains in contact with the object, 

the distance between the center of two circles is equal to 

the sum of the radii Ri  and ri . Hence, the following 

relation holds. 

 ( ) ( ) ( )A a B b R ri i i i i i− + − = +2 2 2 . (3) 

By substituting Eq. (2) into Eq. (3), the compression δ i  

is given by 

 δ i i i i i i ix R r R r y= − + ± + −( ) ( )2
2
. (4) 

Considering the physical constraint, we have 

 δ i i i i i i ix R r R r y= − + + + −( ) ( )2
2
. (5) 

Equation (5) denotes the relationship between the 

displacement ( , , )x yi i iζ  with respect to Σ i  and the 

compression δ i  at the virtual spring ki . 

     In the same way, when either the object or the i-th 

finger has concave arc around the i-th contact point as 

shown in Fig. 3(b), (c), the compression δ i  is given by 

 δ i i i i i i ix R r R r y= − + − + −( ) ( )2
2
. (6) 

 

2.2.2. Object Coordinate Frame 

     We investigate the relationship between the 

displacement at the origin of Σo  and the compression 

δ i . When infinitesimal translation ( , )x y  and rotation 

ζ  occur at the origin of Σo  due to external disturbance, 

the displacement at pi , which is the position of the origin 

of Σ i , is represented by  

 ( )( , ) Rot( )x y IT
i+ −ζ 2 p , (7) 

where I2  is a 2 2×  identity matrix, and Rot( )•  is a 

rotation matrix represented by 

 Rot( )
cos( ) sin( )

sin( ) cos( )
• =

• − •

• •








 . 

By transforming the displacement ( , , )x y ζ  in Σo  into 

the displacement ( , , )x yi i iζ  in Σ i , we have 

 ( )
x

y

x

y
Rot I

i

i
i i









 = −









 + −









Rot( ) ( )θ ζ 2 p , (8) 

      ζ ζi =   (9) 

Using  

 ( )pi i i i i i
T

p= − −cos( ),sin( )θ φ θ φ ,  

we have 

 x x y pi i i i i i= + + − −cos sin {cos( ) cos }θ θ ζ φ φ , 

 y x y pi i i i i i= − + + − +sin cos {sin( ) sin }θ θ ζ φ φ .(10) 

Substituting Eq. (10) into Eq. (5) yields the relation 

between the object displacement ( , , )x y ζ  at the origin of 

Σo  and the compression δ i  at the spring ki . 

 

2.3. Evaluation of grasp stability 

     In this section, we will discuss the stability of the 

equilibrium state by using the potential function of the 

grasp system. Since the potential energy U  stored in the 

whole grasp system is the sum of the energy Ui  stored in 

the i-th spring, we have 

 U U ki i i oi= = +∑ ∑ 1
2

2( )δ δ , (11) 

where δ oi  is an initial compression of the i-th spring. 

     The grasp is in stable configuration if and only if the 

potential energy U  is locally minimum at the 

equilibrium state. The Taylor expansion of U  about the 

equilibrium state is given by 

 U U U HT T= + ∇ + +( )
( ) ( )

0
0

1
2 0

εεεε εεεε εεεε L , (12) 

where 

 εεεε =
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From Eq. (13), the potential function U  is locally 

minimum at the equilibrium state if and only if the 

following two conditions are satisfied. 

     (1) ∇ =U
( )0

0  
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     (2) H
( )0
 is positive definite 

By assumption (2.3), condition (1) is always satisfied. 

     From Eqs. (6), (10) and (11), elements of H
( )0
 

can be estimated 

 H

k k k

k k k

k k k

xx xy x

yx yy y

x y

( )0
=

















ζ

ζ

ζ ζ ζζ

 (13) 

 k k c
f

R r
sxx i i

i

i i
i= −

+
∑ ( )2 2 ,  

 k k k
f

R r
c sxy yx i

i

i i
i i= = +

+
∑ ( ) ,  

 k k l k c l R
f

R r
sx x yi i i xi i

i

i i
iζ ζ= = + −

+
∑{ ( ) } ,  

 k k s
f

R r
cyy i i

i

i i
i= −

+
∑ ( )2 2 ,  

 k k l k s l R
f

R r
cy y yi i i xi i

i

i i
iζ ζ= = − −

+
∑{ ( ) } ,  

 k l k l R l r
f

R r
yi i xi i xi i

i

i i
ζζ = − − +

+
∑{ ( )( ) }2   

  (14) 

where 

 l p Rxi i i i= +cosφ , l pyi i i= sinφ , 

 ci i= cosθ , si i= sinθ , 

 f ki i oi= δ . 

f ki i oi= δ  means an initial grasping force of the i-th 

finger.  

     ki  and fi  can be obtained from stiffness constant 

of virtual spring and initial grasping force, respectively. 

The object’s curvature Ri , the finger’s curvature ri , and 

the relative position pi  is known by assumptions (2.2) 

and (2.3). If all the eigenvalues of H
( )0
 are positive, the 

grasp is in stable configuration. 

 

2.4. Examples 

     In this section, we investigate the influence of the 

curvatures on the stability of grasps shown in Fig. 4 by 

using the proposed method. 

     Case (a) - (e) are simple examples of two-finger 

grasp with equal springs. In these cases, since we have 

 θ 1 0= , θ π2 = ,  

 r r r1 2= = , R R R1 2= = ,  

 k k k1 2 0= = > , f f f1 2 0= = > ,  

 l l lx x1 2 0= = > , l ly y1 2 0= = ,  

 p p p1 2 0= = > ,  

elements of H
( )0
 become 

    
(a) 

 
(b) 

 
(c) 

     
(d)                   (e) 

 

1Σ

2Σ oΣ

3Σ

Finger 1

Finger 2

Finger 3

 
(f) 

Fig. 4  Stability of frictionless grasps 

 

 

 k kxx = >2 0 ,  

 k f R ryy = − +2 ( ) ,  

 k f l R l r R rx xζζ = − − + +2 ( )( ) ( ) , 

 k k k k k kxy yx x x y y= = = = = =ζ ζ ζ ζ 0 , 

where l p R= +  means the distance between the origin 

of Σo  and the contact point. kxx , kyy  and kζζ  imply 

the eigenvalues of H
( )0
. Hence, we get the following 

results. The grasp is always unstable if a convex object is 

held by convex fingers as shown in Fig. 4(a)(b). The grasp 

is stable if a convex object is held by fingers with 

− < < −l r R  as shown in Fig. 4(c). The grasp is always 

stable if a concave object is held as shown in Fig. 4(d)(e). 

Moreover, it is obtained that the larger the radius r is, the 

larger the eigenvalues are. So, the grasp using round 

fingers is more stable than using sharp fingers. 

     Similar results are also provided in Refs. [3] - [5] 

from viewpoint of the form-closure. 

     Case (f) is an example of three-finger grasp. Table 1 
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shows the parameters and the eigenvalues of H
( )0
. The 

stability of the grasp cannot be determined by inspection. 

However, the grasp is stable because all the eigenvalues 

are positive. 

 

3. Stability of grasps with friction 

 

3.1. Modeling 

     In this section, we consider stability of grasps with 

friction. In order to simplify the discussion, we make the 

following assumptions. 

(3.1) Finger and object are in contact with friction. 

(3.2) Each fingertip does not rotate because angular 

stiffness of the finger is strong enough. 

(3.3) An equilibrium grasp is given initially. 

By assumption (3.1), each finger does not slide on the 

object surface. Note that the assumption (3.1) is the key 

difference from section 2. 

     We use the same coordinate frames Σo  and Σ i  

defined in section 2. A spring along the axis yi  is 

required because each finger can generate tangential force 

at the contact point. So, the virtual spring ki  is replaced 

by two virtual springs kxi  and k yi , which are fixed at 

the center of curvature of the i-th contact point as shown 

in Fig. 5. kxi  and k yi  are stiffness constants along xi  

and yi  axis. 
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Fig. 5  A grasp with friction point contact 
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Fig. 6  Rolling contact 

 

3.2. Compression of virtual springs 

     We will derive the potential energy of the grasp 

system. So, the compression δ xi  and δ yi  due to the 

object displacement will be investigated. 

     By assumptions (3.1) and (3.2), the positions of the 

object and the i-th finger move as shown in Fig. 6 when 

the infinitesimal translation ( xi , yi ) and rotation ζ i  

occur. The following equations are obtained from 

geometric constraints. 

 R r x R ri i xi i i i i+ + = + +δ α( ) cos , 

 δ αyi i i i iy R r= + +( ) sin , 

 r Ri i i i iα ζ α= −( )  (15) 

Since the relation between ( , , )x yi i iζ  and ( , , )x y ζ  is 

represented by Eqs. (9) and (10), the compression δ xi  

and δ yi  are given by 

 
δ θ θ ζ φ φ

α
xi i i i i i

i i i

x y p

R r

= + + − −

− + −

cos sin {cos( ) cos }

( )( cos )1
, 

 
δ θ θ ζ φ φ

α
yi i i i i i

i i i

x y p

R r

= − + + − +

+ +

sin cos {sin( ) sin }

( ) sin
, 

 α ζi
i

i i

R

R r
=

+
 (16) 

Equation (16) expresses the relation between an object 

displacement ( , , )x y ζ  and the compression δ xi  and 

δ yi .  

 

3.3. Evaluation of grasp stability 

     The potential energy of the grasp system is given by 

 

U U

k k

i

xi xi xoi yi yi yoi

=

= + + +

∑
∑{ ( ) ( ) }1

2
2 1

2
2δ δ δ δ  (17) 

where δ xoi  and δ yoi  are initial compression at the 

equilibrium state. The grasp is in stable configuration if 

and only if the potential function U  is locally minimum 

at the equilibrium state. By assumption (3.3), ∇ =U
( )0

0  

is always satisfied. The elements of H
( )0
 become 

 k k c k sxx xi i yi i= +∑ ( )2 2 , 

 k k k k c sxy yx xi yi i i= = −∑ ( ) , 

k k k l c k l sx x xi yi i yi xi iζ ζ= = −∑ ( ) ,

 k k s k cyy xi i yi i= +∑ ( )2 2 , 

 k k k l s k l cy y xi yi i yi xi iζ ζ= = +∑ ( ) , 

 k k l k l f l
R r

R r
f lxi yi yi xi xi xi

i i

i i
yi yiζζ = + − −

+
+∑{ ( ) }2 2 , 

  (18) 

where 

 l p Rxi i i i= +cosφ , l pyi i i= sinφ , 
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 ci i= cosθ , si i= sinθ , 

 f kxi xi xoi= δ , f kyi yi yoi= δ  

f kxi xi xoi= δ  and f kyi yi yoi= δ  are the initial grasping 

forces along xi  and yi  axis respectively. li  means the 

distance between the origin of Σo  and the i-th contact 

point.  

     When the value of k xi , k yi , f xi , f yi , Ri , ri , 

pi  are given, we can compute H
( )0
. If all the 

eigenvalues of H
( )0
 are positive, the grasp is in stable 

configuration. 

 

3.4. Stiffness constants for stabilizing the grasp 

     As shown in section 3.3, whether the grasp is in 

stable configuration or not can be evaluated when the 

stiffness constants k xi  and k yi  are given. In this section, 

we will determine the condition of stiffness constants to 

stabilize the grasp. This analysis is difficult because the 

elements of H
( )0
 are complex. For simplicity, we make 

the following assumptions in addition to assumptions (3.1) 

-(3.3). 

(3.4) The object is held by a three-finger hand. The contact 

points between the object and the fingers are not aligned. 

(3.5) Each xi  axis goes through the same point, and the 

initial finger force is along xi . 

(3.6) There is no interference between translation and 

rotation of the object. 

By assumption (3.5), we have δ yoi = 0 . When the origin 

of Σo  is fixed at the intersection of xi , we have 

sinφ i = 0 .  

     By assumptions (3.4) and (3.5), the elements of 

H
( )0
 are simplified as follows: 

 k k c k sxx xi i yi i
i

= +
=
∑ ( )2 2

1

3

, 

 k k k k c sxy yx xi yi i i
i

= = −
=
∑ ( )
1

3

, 

 k k l k sx x xi yi i
i

ζ ζ= = −
=
∑
1

3

, 

 k k s k cyy xi i yi i
i

= +
=
∑ ( )2 2

1

3

, 

 k k l k cy y xi yi i
i

ζ ζ= =
=
∑
1

3

, 

 k k l f l
R r

R r
yi xi xi xi

i i

i ii
ζζ = − −

+=
∑{ ( )}2

1

3

, (19) 

The matrix H
( )0
 is positive definite if and only if the 

following three conditions are satisfied. 

     (1) k xx > 0  
     (2) k k k kxx yy xy yx− > 0  

     (3) det
( )

H
0

0>  

From Eq. (19), conditions (1) and (2) are always satisfied. 

However, condition (3) is not always satisfied. This 

implies that stiffness constants k xi  and k yi  have lowest 

limits. Consequently, we investigate the limits.  

     By assumption (3.6), we have 

 k k l k sx x i yi i
i

ζ ζ= = − =
=
∑
1

3

0 ,  

 k k l k cy y i yi i
i

ζ ζ= = =
=
∑
1

3

0 . (20) 

Hence, the ratio of k yi  is constrained by the following 

straight line. Arbitrariness of k yi  is represented by 

magnitude β . 

 

k

k

k

l

l

l

y

y

y

1

2

3

3 2 1

1 3 2

2 1 3
















=

−

−

−

















β
θ θ
θ θ
θ θ

sin( )

sin( )

sin( )

. (21) 

Then H
( )0
 becomes 

 H

k k

k k

k

xx xy

yx yy( )0

0

0

0 0

=

















ζζ

. (22) 

Since k xx > 0  and k k k kxx yy xy yx− > 0  are always 

satisfied, the condition for satisfying det
( )

H
0

0>  is 

given by  

 k k l f l
R r

R r
yi xi xi xi

i i

i ii
ζζ = − −

+
>

=
∑{ ( )}2

1

3

0. (23) 

From Eqs. (21) and (23), the lowest limit of β  for 
stabilizing the grasp is given by 

 β
θ θ θ θ θ θ

>

−
+

− + − + −
=
∑ f l

R r

R r

l l l

xi i
i i

i ii

( )

sin( ) sin( ) sin( )

1

3

1 3 2 2 1 3 3 2 1

 

   = β o   (24) 

Therefore, the grasp is always in stable configuration 

when stiffness constant k yi  satisfying Eq. (24) is set. 

Note that stiffness constant k xi  can be set at an arbitrary 

positive value. 

     We will compare the proposed method with Refs. 

[8] and [9]. Since Refs. [8] and [9] assumed that the object 

is held by sharp fingers, we have ri = 0 . Hence, the 
lowest limit of β  is represented by 
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 β
θ θ θ θ θ θ

>
− + − + −

=
∑ f l

l l l

xi i
i 1

3

1 3 2 2 1 3 3 2 1sin( ) sin( ) sin( )
 

   = β p   (25) 

Since we have 

 β βp o≥ , (26) 

the curvature of the fingers decrease the lowest limit of 

k yi . Therefore, our method decreases the energy 

consumed in the grasp system. 

 

4. Conclusions    
 

     We have analyzed the grasp stability by considering 

the curvature of both hand and object at contact points and 

the grasp with friction and frictionless point contact. Using 

the potential energy, the analyses are greatly simplified. 

From these analyses, it is shown that the grasp using round 

fingers is more stable than using sharp fingers. Moreover, 

it is proved that, for a curvature grasps with friction, the 

required stiffness of fingers are decreased. 

     This paper assumed no interference between 

translation and rotation of the grasped object. We will 

establish the condition of stiffness constants with the 

interference in the future work. Our current interesting 

problem is the extension of the planar problem in the 

paper to the spatial problem. 
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Table 1  Numerical Examples 

  Forces Angle & Position Curvature Eigenvalues & 

 i ki  δ oi  θ i  pi  ri  Ri  Stability 

 1 1 1.00e-2 tan−1 3 (0.1, 0.3) -0.4 0.2 (2.0, 1.1, 0.0086) 

 2 1 3.16e-3 π  (-0.2, 0.0) 0.1 0.2 Stable 

 3 1 9.49e-3 3 2π  (0.0, -0.2 3 ) 0.1 -0.2  

 


