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Abstract 
   This paper discusses the stability of 2D frictionless 

grasps and combining stability of frictional and 

frictionless grasps from the viewpoint of potential energy 

method. In many works related to the frictionless grasp, 

each finger is replaced by one directional virtual spring 

along the normal at the contact point. However, this 

condition is not accurate, because the frictionless 

condition does not mean one-spring model but means 

contact force condition. So, in order to represent the 

condition that the contact force directs to the normal at 

the contact point, a two-dimensional virtual spring model 

is essential. It is clarified that the relation between one- 

and two-spring cases. Some numerical examples are 

presented to verify our analysis. Moreover, stiffness 

condition of the spring for stabilization of the grasp is 

established. Finally, we derive stiffness matrix for both 

frictional and frictionless grasps from the same 

derivation. 

   Key Words: stability, potential energy, frictional and 

frictionless grasps, stiffness condition. 

 

1. Introduction 
   Human hand can easily accomplish complex and 

difficult tasks. So it is required for the robot hand to grasp 

dexterously instead of the human hand. 

   The fundamental ability of grasping is to maintain the 

grasp stable against external disturbances. In the method 

for analyzing the grasp stability, the robot finger is 

replaced by elastic finger and then stability is discussed 

from the viewpoint of potential energy. 

   If counterclockwise disturbance exerts on the grasp 

system as shown in Fig. 1 (a), the fingertip shifts as 

follows. For the frictional case, the fingertip moves to 

counterclockwise direction as shown in Fig.1 (b). If the 

frictionless case is considered, the fingertip moves to 

clockwise direction as shown in Fig. 1(c). So stability is 

greatly influenced by contact conditions. 

   Kaneko et al. [1] derived the stiffness matrix of 

frictional planar grasps by two-dimensional virtual springs, 

and investigated the stability. Moreover, the stiffness 

conditions for stabilization of the grasp were established. 

Mimura et al. [2] extended it to 3-dimensional grasps.  

   Nguyen [3] treated frictionless planar grasps. The 

effect of object shape at the contact to the grasp stability is 

also analyzed. Howard and Kumar [4] discussed the 

stability including the shape of the object and finger at 

contact points from viewpoint of restoring forces. 

However, the method is somewhat complex. Funahashi et 

al. [5] analyzed the stability from the viewpoint of 

potential energy using the curvatures at the contact point. 

   Refs. [3], [5] treated frictionless grasps by using a 

one-dimensional virtual spring model, where the fingertip 

displaced along the same line shown in Fig.1 (d). However, 

this condition is not accurate, because the frictionless 

condition does not mean one-spring model but means 

contact force condition. If we consider the 

two-dimensional displacement of the fingertip as shown in 

Fig. 1 (c), then it will be more significant in practical use. 

So the finger is replaced by a two-dimensional virtual 

spring and the contact force is considered along the 

normal at the contact. Comparing our analysis with Ref. 

[5], the effect of the tangential spring is considered. 

Stability, flexibility and energy are important factors for 

grasping in practical. Using the larger tangential spring 

stiffness, less flexibility and much energy are required to 

grasp the object. 

   Moreover, we combine the frictionless and the 

frictional grasps in the same derivation in section 3. The 

advantage of this analysis is that we need not extra 

calculation for each case. 
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Fig.1: Fingertip displacements for each condition 
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Fig.2: Object grasped by a multifingered hand  
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Fig.3: Coordinates and virtual springs 

 

2. Frictionless grasp 
   In this section, we discuss the stability of frictionless 

planar grasps by a multifingered hand as shown in Fig. 2. 

Fig. 3 shows the i-th finger makes contact with the object. 

2.1. Assumptions 

   For simplicity of discussions, we make the following 

assumptions. 

(A1) 2-dimensional frictionless grasps are considered.  

(A2) The shapes of the fingertip and the object are known, 

and the curvatures around the contact point are given. 

(A3) Initial configuration is known and is in equilibrium 

state. 

(A4) Infinitesimal object displacement is occurred. 

(A5) The fingertip does not rotate. 

(A6) Each finger is replaced by a two-dimensional virtual 

spring as shown in Fig. 3. One spring xik  is along the 

normal and another yik  is parallel to the tangent. 

   We define three coordinate frames shown in Fig. 3. 

oΣ  is an object coordinate frame. oiΣ  and fiΣ  are 

local coordinate frames fixed at the center of the circle of 

object's and finger's curvature, respectively. The x axes of 

oiΣ  and fiΣ  are along the normal. The position and the 

orientation of oiΣ  with respect to oΣ  are denoted by 

ip  and iθ , respectively. The radius of curvatures for 

object and finger are denoted by oiρ  and fiρ , 

respectively. 

 0>ρ  for convex arc,  

 0<ρ  for concave arc. 

Contact point on the object with respect to oΣ  is denoted 

by T
ioiioiioi ]sin,cos[ θρθρ+= pc . Initial grasping 

force with respect to fiΣ  is denoted by 
T

yixi ff ],[ . 

This force is exerted by the initial compression, 
T

yoixoi ],[ δδ , of the i-th spring. This means 

 xoixixi kf δ= , yoiyiyi kf δ= . (1) 

From (A1), no tangential force is applied, i.e., 0=yif . 

2.2. Relation between object and finger displacements 

   In this section, we derive the relationship between 

object and finger displacements. First, we develop the 

relation between oiΣ  and fiΣ  frames and then the 

relation between oΣ  and oiΣ  frames, respectively. 

Finally, we have the relationship between oΣ  and fiΣ  

frames.  

2.2.1 The relationship between oiΣ  and fiΣ  

   We will derive the relation of oiΣ  and fiΣ . From 

Fig. 4, the initial position of fiΣ  with respect to oiΣ  is 

 T
fioi ]0,[ ρρ + . (2) 

Let us denote translational and rotational displacements of 

contact frame oiΣ  as follows: 

 T
iiii yx ],,[ ζε = . (3) 

Due to displacement, the position of finger shifts to 

 T
ifioiiifioii yx ]sin)(,cos)([ βρ+ρ+βρ+ρ+ . (4) 

Hence, the displacement 
T

yixi ],[ δδ is determined by 

    )(cos)( fioiifioiixi x ρ+ρ−βρ+ρ+=δ , (5) 

    ifioiiyi y βρ+ρ+=δ sin)( , (6) 

where iβ  is the angle between the segments. The letter 

iβ  implies the direction of the normal. 

   Due to disturbances, if the finger moves 
T

yixi ],[ δδ  

with respect to fiΣ , then x and y coordinates contact 

force are )( xoixixik δδ +  and yiyik δ , respectively. The 
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Fig.4: The relation of oiΣ  and fiΣ  
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Fig.5: The relation of the contact force and the angle iβ  

 

direction of the contact force is same to the normal as  

shown in Fig.5. Hence, the angle iβ  is given by 

 
( )xoixixi

yiyi
i

k

k

δ+δ

δ
=βtan . (7)  

2.2.2. The relationship between oΣ  and oiΣ  

   Translational and rotational displacements of the 

object with respect to oΣ  are denoted by x, y, and ζ, 
respectively. Let us define εεεε  as 

 Tyx ],,[ ζ=εεεε . (8) 

   We derive the relation between oΣ  and oiΣ . The 

displacement of oiΣ  is given by 

 ( ){ }iT
i

T
ii IRotyxRotyx p2)(],[)(],[ −ζ+θ−= , (9) 

where 2I  is a 22×  identity matrix, )(•Rot  is the 

following rotation matrix. 

 








••

•−•
=•

)cos()sin(

)sin()cos(
)(Rot . (10) 

The position vector ip  is given by 

 [ ]Tiiiiii p )sin(),cos( φθφθ −−=p , (11) 

where iφ  is the angle between the position vector 

ip and  the i-th local object coordinate frame oiΣ .  

   Then, we have 

 { }iiiiii pyxx φφζθθ cos)cos(sincos −−++= , (12) 

 { }iiiiii pyxy φφζθθ sin)sin(cossin −−++−= , (13) 

 ζζ =i .  (14) 

Substituting Eqs. (12), (13) into (5), (6) yields the relation 

between object displacement εεεε and fingertip displacement 
T

yixi ],[ δδ . 

2.3. Potential energy and stiffness matrix of the grasp 

   By the object displacement due to external 

disturbances, potential energy stored in the grasp by an 

n-fingered hand as shown in Fig.3 is given by 

 ∑
=

δ+δ+δ=ε
n

i
yiyixoixixi kkU

1

22 })({
2

1
)( . (15) 

Taking Taylor series around 0=ε yields 

 LL++∇+= εεεε HUUU
TT

2

1
)0()(

)0(
, (16) 
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  (17) 

   The initial grasp is stable if and only if the following 

two conditions are satisfied. 

         (i) 0
)0(
=∇U , 

         (ii) H  is positive definite. 

Condition (i) is satisfied by Assumption (A3). So 

condition (ii) is the stability condition of the grasp. The 

hessian H  is given by 

  ∑
=

δ∇δ∇+δ∇δ∇=
n

i

T
yiyiyi

T
xixixi kkH

1
0000 ))(())(({  

    )}( 0xi
T

xif δ∇∇+ .  (18) 

   Hence, if 0xiδ∇ , 0yiδ∇ , 0xi
Tδ∇∇  are derived, 

then H  can be determined, and the stability can be 

evaluated. These three terms can be derived by using Eqs. 

(5) and (6). Appendix A shows the detail derivation. 

Substituting all the values in Eq. (18), the hessianH  is 

given by 
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where 

   T
iioiiioii

T
yixi ppRll ]sin,cos[)(:],[ φρφθ +=−= c . 

   Therefore, the stability depends on the spring stiffness, 

the curvatures, as well as the magnitude and position of 

the contact forces. If these parameters are given, then we 

can derive H  and evaluate the stability.  

   The first and the third terms are the same to Ref. [5]. 

So we will investigate the second term of our result. In 

case of one-directional model, there is no translational 

spring in the y direction. In our case, this means 

∞→yik , 



 
fioi

xi

fioiyixi

yixi

k

f

kf

kf

yi ρρρρ +
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+−∞→ )(
lim . 

Our results satisfy the one-spring model of Ref. [5]. 

2.4. Numerical Examples 

   To verify our analysis, we explore the stability 

conditions by using numerical examples. To simplify our 

analysis, objects grasped by a two-fingered hand as shown 

in Fig. 6. We assume that the parameters are given by 
     0>= xxi ll , ooi ρρ = , ffi ρρ = ,  

     0>= xxi ff , 0>= xxi kk , 0>= yyi kk , 

     01 =θ , πθ =2 , .0=iφ  

Then we have 

 ][ ζζ= kkkdiagH yyxx , 

where 

    ,2 xxx kk =  ,
)(

2

foyx

yx
yy

kf

kf
k

ρρ +−
=  (20) 

    .
)(

)}(){(2

foyx

fxyxoxx

kf

lkflf
k

ρ+ρ−

ρ++−ρ−
=ζζ  (21) 

If the total stiffness xxk , yyk , and ζζk  are positive, the  

 

     
    (a) 0>ρo , 0>ρ f       (b) 0>ρo , 0<ρ f  

 
(c) 0<ρo , 0>ρ f  

Fig. 6: 2-fingered grasps 
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(a) yyk  with respect to yk  
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(b) ζζk  with respect to yk  

Fig.7: Total stiffness vs. yk  

       
 (a) case 1     (b) case 2           (c) case 3:  

Fig. 8: Convex object grasped by concave fingers 

 

grasp is stable. In Fig. 7, the solid lines depict yyk  and 

ζζk  with respect to yk  with 1.0=xl , 0.1=xf , and  

          (a) 02.0=oρ , 02.0=ρ f , 

          (b) 02.0=oρ , 04.0−=ρ f , 

          (c) 04.0−=oρ , 02.0=fρ . 

The solid lines asymptotically join with the dotted lines 

(one-dimensional spring model). If yk  is enlarged, the 

stability is also enlarged. As a result, more energy is 

required to control the fingers, as well as flexibility of the 

grasp will be less. So it is important to derive the lowest 

limit of yk . 

   For Fig. 6 (a), yyk  is always negative and the grasp 

is unstable. For Fig. 6(b), there are three cases shown in 

Fig. 8 (see Appendix B for Details). Dotted line depicts 

the circle with radius xl . Case 1 ( oxl ρ< ) is always stable. 

Case 2 ( fxo l ρ−<<ρ ) is unstable because object can 

rotate and it does not return to initial position. Case 3 

( fxl ρ−> ) and Fig. 6 (c) are stable if we set 

)( fxxy lfk ρ+> . For the one-spring case, Fig. 6 (c) 

and Fig. 8 (c) are always stable. 

2.5. Stabilization conditions for 3-finger grasps 

   We derive the stiffness conditions for stabilization of 

3-finger grasps. In this case, contact forces intersect at one 

point. If the object frame oΣ  is fixed at the intersection, 

yil  becomes zero. Eq. (19) can be rewritten as 

 TT
x

T
y dBBKAAKH cc−+= ' , 

where 

],,[ 321 xxxx kkkdiagK = , ],,[ 321 yyyy kkkdiagK ′′′=′ , 

 yi
fioiyixi
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yi k
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f
k

)( ρρ +−
=′ ,  (22) 
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If 3)( =Arank  is satisfied, we can define the following 

matrix P: 

 TT
xy dBKBKP cc~~
~~

' −+= , (23) 

where BAB
1

:
~ −= , cc

1
:~ −= A . Let us define Q as 

 T
x

T
ij BKBdqQ

~~~~:}{ −== cc . (24) 

1yk ′  is assigned to be 

    111 qk y >′ . (25) 

2yk′  is assigned to be 

  22
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2
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q
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y
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then the grasp is made stable. From Eqs. (22) and (25), 

1yk  must satisfy the following condition 

 11
1111

11

)(
q

kf

kf

foyx

yx >
+− ρρ

. 

In the similar way, we have the conditions of 2yk , 3yk  

from Eqs. (22), (26) and (27). 

 

3. Combining frictional and frictionless 

grasps 
   In the previous section, we have analyzed the 

frictionless grasps. Many authors have investigated the 

frictional and the frictionless cases separately. But there 

has been no previous work on the grasp stability by a 

multifingered hand with combining frictional and 

frictionless grasps. Fig. 9 depicts that the i-th finger makes 

contact with the object for frictional and frictionless cases.  

   If the object moves to upward direction and rotates to 

counterclockwise direction, for the frictional case, the 

finger rotates to the upward direction. The position of the 

finger is given by 

 )( fioiioii ρρζρα += . 

In the frictionless case, the finger slips to downward 

direction. The position of the finger is given by iβ  of Eq. 

(7). 

   In this section, we combine the frictional and the 

frictionless grasps by incorporating a new parameter λ . 

λ=1 for frictional case and λ=0 for frictionless case. 
Combining the above two conditions yields 
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Fig.9: Frictional and frictionless grasps. 

 

 iii βλλαγ )1( −+= . (28) 

From Fig.9, the compression of the spring is given by 

      )(cos)( fioiifioiixi x ρ+ρ−γρ+ρ+=δ , 

      ifioiiyi y γρ+ρ+=δ sin)( .  (29) 

By using Appendix C, the hessian becomes 
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where )(: fioiyii kF ρ+ρ= . The above stiffness matrix is 

the combination of the frictional and the frictionless grasps. 

If we substitute λ =1, then our result is same to the 

frictional case of Ref. [5]. On the other hand, if we 

substitute λ =0, then Eq. (30) becomes Eq. (19). 

 

4. Conclusions 
     In order to consider contact force conditions, we 

have introduced the frictionless two-dimensional virtual 

spring model. And the stiffness matrix for the frictionless 

planar grasp has been established. Then we have the 

following results. 

(i) If tangential spring yk  tends to ∞ , then our 

two-dimensional model becomes the one-dimensional 

model and our result satisfies the result of Ref. [5]. 

(ii) The stability is proportional to yk . 

If yk  is assigned to be a large value, much energy is 



required to control the fingers.  

(iii) We have also derived the lowest limit of yk  to 

stabilize the grasps.  

(iv) Moreover we have unified the frictional and the 

frictionless cases with incorporating the parameter λ . 

Its value is 1 and 0 respectively for the above cases. 

The advantage of combining two kinds of grasp is that we 

need not separate calculation for each case. Finally, it is 

shown that the stability depends on the spring stiffness, 

object and finger curvatures, as well as contact position 

and forces. 
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Appendix A 

   The 1st and the 2nd order derivatives of Eqs. (5) and 

(6) at initial condition are given by 

     00 ixi x∇=∇δ , 

     ))(( 000 ifioiiyi y β∇ρ+ρ+∇=δ∇ , 

   
T

iifioii
T

xi
T

x ))()(( 0000 β∇β∇ρ+ρ−∇∇=δ∇∇ , 

where 0ix∇ , 0iy∇ , 0i
T x∇∇  are given by  

      T
iiiii px ]sin,sin,[cos0 φθθ=∇ , 

      T
iiiii py ]cos,cos,sin[0 φθθ−=∇ , 
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Taking the 1st derivative of Eq. (7), we have 

yiyixiixii

i

xoixixi kkk δδββ
β

δδ ∇=∇+∇+ )(tan
cos

1
)(

2

If we consider the initial conditions, then we have 

 
00 )(

i
fioiyixi

yi
i y

kf

k
∇

ρ+ρ−
=β∇ . (31) 

 

Appendix B 

   For Fig. 6 (a), it is shown in Fig. 4 that iy  and iβ  

always move to opposite direction due to two convex 

curves. So )}({ foyx kf ρ+ρ−  is negative.  

   For Fig. 6 (b), yyk  is. positive because 

0)( <+ fo ρρ  and 0)}({ >+− foyx kf ρρ . Now we 

investigate the conditions which make ζζk  positive. 

From Eq. (21), we have following two conditions: 

   (i) if 0)( <ρ+ fxl , 0))(( <
ρ+

−ρ−
fx

x
yox

l

f
kl , 

   (ii) if 0)( >ρ+ fxl , 0))(( >
ρ+

−ρ−
fx

x
yox

l

f
kl . 

From (i) and (ii), we have the following 4 cases shown in 

Table 1. Physically, yk  is always positive. For case 1, 

0)( <+ fxx lf ρ , ζζk  is positive for any 0>yk . For 

case 2, yk  has no positive value. Case 3, if 

)(0 fxxy lfk ρ+<< , then the grasp is unstable. Case 4, 

oxf l ρρ <<−  is practically impossible. 

 

Table 1: Stabilization conditions 

Case fxl ρ:  
oxl ρ:  Condition for yk   

1 fxl ρ−<  
oxl ρ<  )( fxxy lfk ρ+>  stable 

2 fxl ρ−<  
oxl ρ>  )( fxxy lfk ρ+<  unstable 

3 fxl ρ−>  
oxl ρ>  )( fxxy lfk ρ+>  conditionally 

stable 

4 fxl ρ−>  
oxl ρ<  )( fxxy lfk ρ+<  unrealistic 

 

Appendix C 

From Eq. (29), we have 

 00 ixi x∇=δ∇ , ))(( 000 ifioiiyi y γ∇ρ+ρ+∇=δ∇ , 

 
T

iifioii
T

xi
T

x )())(( 0000 γ∇γ∇ρ+ρ−∇∇=δ∇∇ . 

From Eq. (28), we have 
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