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Abstract

This paper discusses the stability of 2D frictionless
grasps and combining stability of frictional and
frictionless grasps from the viewpoint of potential energy
method. In many works related to the frictionless grasp,
each finger is replaced by one directional virtual spring
along the normal at the contact point. However, this
condition is not accurate, because the frictionless
condition does not mean one-spring model but means
contact force condition. So, in order to represent the
condition that the contact force directs to the normal at
the contact point, a two-dimensional virtual spring model
is essential. It is clarified that the relation between one-
and two-spring cases. Some numerical examples are
presented to verify our analysis. Moreover, stiffness
condition of the spring for stabilization of the grasp is
established. Finally, we derive stiffness matrix for both
frictional and frictionless grasps from the same
derivation.
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1. Introduction

Human hand can easily accomplish complex and
difficult tasks. So it is required for the robot hand to grasp
dexterously instead of the human hand.

The fundamental ability of grasping is to maintain the
grasp stable against external disturbances. In the method
for analyzing the grasp stability, the robot finger is
replaced by elastic finger and then stability is discussed
from the viewpoint of potential energy.

If counterclockwise disturbance exerts on the grasp
system as shown in Fig. 1 (a), the fingertip shifts as
follows. For the frictional case, the fingertip moves to
counterclockwise direction as shown in Fig.1 (b). If the
frictionless case is considered, the fingertip moves to
clockwise direction as shown in Fig. 1(c). So stability is
greatly influenced by contact conditions.

Kaneko et al. [1] derived the stiffness matrix of
frictional planar grasps by two-dimensional virtual springs,
and investigated the stability. Moreover, the stiffness
conditions for stabilization of the grasp were established.
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Mimura et al. [2] extended it to 3-dimensional grasps.

Nguyen [3] treated frictionless planar grasps. The
effect of object shape at the contact to the grasp stability is
also analyzed. Howard and Kumar [4] discussed the
stability including the shape of the object and finger at
contact points from viewpoint of restoring forces.
However, the method is somewhat complex. Funahashi et
al. [5] analyzed the stability from the viewpoint of
potential energy using the curvatures at the contact point.

Refs. [3], [5] treated frictionless grasps by using a
one-dimensional virtual spring model, where the fingertip
displaced along the same line shown in Fig.1 (d). However,
this condition is not accurate, because the frictionless
condition does not mean one-spring model but means
contact force condition. If we consider the
two-dimensional displacement of the fingertip as shown in
Fig. 1 (c), then it will be more significant in practical use.
So the finger is replaced by a two-dimensional virtual
spring and the contact force is considered along the
normal at the contact. Comparing our analysis with Ref.
[5], the effect of the tangential spring is considered.
Stability, flexibility and energy are important factors for
grasping in practical. Using the larger tangential spring
stiffness, less flexibility and much energy are required to
grasp the object.

Moreover, we combine the frictionless and the
frictional grasps in the same derivation in section 3. The
advantage of this analysis is that we need not extra
calculation for each case.

(b) Frictional grasp

(d) Frictionless with
one-directional
displacement

Fig.1: Fingertip displacements for each condition
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Fig.2: Object grasped by a multifingered hand

Fig.3: Coordinates and virtual springs

2. Frictionless grasp
In this section, we discuss the stability of frictionless
planar grasps by a multifingered hand as shown in Fig. 2.
Fig. 3 shows the i-th finger makes contact with the object.
2.1. Assumptions
For simplicity of discussions, we make the following
assumptions.
(A1) 2-dimensional frictionless grasps are considered.
(A2) The shapes of the fingertip and the object are known,
and the curvatures around the contact point are given.
(A3) Initial configuration is known and is in equilibrium
state.
(A4) Infinitesimal object displacement is occurred.
(AS5) The fingertip does not rotate.
(A6) Each finger is replaced by a two-dimensional virtual
spring as shown in Fig. 3. One spring k,; is along the

normal and another k; is parallel to the tangent.

We define three coordinate frames shown in Fig. 3.

L, is an object coordinate frame. X, and X ; are

local coordinate frames fixed at the center of the circle of
object's and finger's curvature, respectively. The x axes of
I, and X, are along the normal. The position and the

o

orientation of X, with respect to X, are denoted by
p; and @;, respectively. The radius of curvatures for
object and finger are denoted by p, and pg .,

respectively.
p >0 for convex arc,

p <0 for concave arc.

Contact point on the object with respect to %, is denoted
by ¢, = p; +[pyi cosb;, p,i siné’i]T . Initial grasping
force with respect to X ; is denoted by [fy, /. y,-]T .
This force is exerted by the initial compression,
(6o 5y0i]T , of the i-th spring. This means

Jri =kxiOxois Syi =kyid ;- (D)
From (A1), no tangential force is applied, i.e., /,; =0.

2.2. Relation between object and finger displacements
In this section, we derive the relationship between

object and finger displacements. First, we develop the

relation between X, and X frames and then the

relation between X, and X, frames, respectively.
Finally, we have the relationship between X, and X5

frames.
2.2.1 The relationship between X, and X ;

We will derive the relation of X, and X ;. From
Fig. 4, the initial position of X ; withrespectto X,; is
[Poi + 501" . )

Let us denote translational and rotational displacements of
contact frame X,; as follows:

& =Dyl 3)
Due to displacement, the position of finger shifts to
[x; + (Poi +P 4)COSPy.y; + (P +p p)sinB; 1. (4)

Hence, the displacement [0,;,0 ]T is determined by

yi
Oy =x; +(Poi +P ) COSP; —(Poi +P ) (5)
0y =y +(Poi + P )sinp;, (6)
where B; is the angle between the segments. The letter

B; implies the direction of the normal.
Due to disturbances, if the finger moves [5xi,5y,-]T
with respect to X 4, then x and y coordinates contact

forceare k,;(6y; +6,,) and k0

yi » respectively. The
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Fig.4: The relation of £,; and X



kxi (5xi + 5xoi)

Fig.5: The relation of the contact force and the angle f3;

direction of the contact force is same to the normal as
shown in Fig.5. Hence, the angle B; is given by

kyid i
kxl' (Sxi + 8xoi)
2.2.2. The relationship between X, and X ;

tanf3; = (N

Translational and rotational displacements of the
object with respect to X, are denoted by x, y, and ¢

respectively. Let us define ¢ as
e=[xycl. @®)
We derive the relation between X, and X, . The
displacement of X ; is given by
L0117 = Rot(=0,)[x,v17 +(Rot(©) -1, )p; |, ()
where /[, is a 2x2 identity matrix, Rot(e) is the
following rotation matrix.

| cos(e) —sin(e)
Rot(®) = Lin(o) cos(e) } (10)
The position vector p; is given by
i = pilcos(d, — ¢;).sin(0; - 4))]" . (11)

where ¢, is the angle between the position vector
p;and the i-th local object coordinate frame X ;.
Then, we have
X; = xcos; + ysin6; + p;{cos(¢ —¢;)—cosg; }, (12)
y; = —xsin6; + ycosd; + p; {sin(¢ —¢;) —sing; }, (13)
¢i=¢. (14)
Substituting Egs. (12), (13) into (5), (6) yields the relation
between object displacement ¢ and fingertip displacement
[dxi > dyi ]T :
2.3. Potential energy and stiffness matrix of the grasp
By the object displacement due to external

disturbances, potential energy stored in the grasp by an
n-fingered hand as shown in Fig.3 is given by

UG = 21 By +8,500) +hydy 2. (15)
Taking Taylor ser_ies around & = 0yields
U(e) = U(0)+5TVU|(0) +%gTHg+ ...... . (16)
where

5 o’U 8°U o*U
E o2 Ox0y 0x0¢
g U o*'Uu U T

v: — |, H: =VV U .
& oyox  gy? Ayos ©
K U U U
L2 ] ocox aLy o> o

a7
The initial grasp is stable if and only if the following
two conditions are satisfied.

@) VU|(0) =0,
(i) H is positive definite.
Condition (i) is satisfied by Assumption (A3). So

condition (ii) is the stability condition of the grasp. The
hessian H is given by

n
H =Y 4k (V84| 0) (V8] 0) +K,:(V8 i 0)(V8 ] 0)
i=1

L (VY 8.]0)1 (18)
Hence, if V§xi|0 , Vﬁyi|0, VVTéx,-|0 are derived,

then H can be determined, and the stability can be
evaluated. These three terms can be derived by using Egs.
(5) and (6). Appendix A shows the detail derivation.
Substituting all the values in Eq. (18), the hessian H is
given by

; cos0; | cosO;
H =2 14ky|sin0; | sin®;

i=l
Iyi lyi

—sin@; || —sind;

n fxikyi
Jai = kyi(Poi + P )

cosb; cosb;

in = Poi lxi = Poi

00 0
- /400 0 R (19)
00 lxi ~ Poi

where

[lxi’lyi]T =R(=6;)c,; =[p; c0sd; + poy;. p; sing;

Therefore, the stability depends on the spring stiffness,
the curvatures, as well as the magnitude and position of
the contact forces. If these parameters are given, then we
can derive H and evaluate the stability.

The first and the third terms are the same to Ref. [5].
So we will investigate the second term of our result. In
case of one-directional model, there is no translational
spring in the y direction. In our case, this means
ky =,

1.



lim fxikyi __ fxl .

kyi—o fri —kyi(Poi+ Ps) Poi t Pfi
Our results satisfy the one-spring model of Ref. [5].
2.4. Numerical Examples

To verify our analysis, we explore the stability

conditions by using numerical examples. To simplify our
analysis, objects grasped by a two-fingered hand as shown
in Fig. 6. We assume that the parameters are given by

l_xi :l_x >07 Poi = Po> pﬁ :pfs

fxi :fx >O, kxi :kx >O, kyi :ky >0,

6,=0, b=7, ¢;=0.
Then we have

H =diaglky, k,, kel

where
21 .k
koo =2k, k,, = - , (20)
= ! » fx_ky(po+pf)
2fx(lx_po){_fx+k (lx+p )}
kee = Y 7 o

fx_ky(po +pj)

If the total stiffness k., k,,,and k@v are positive, the

y>
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(©) po<0, py>0
Fig. 6: 2-fingered grasps
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Fig.7: Total stiffness vs. &,

(a) case 1 (b) case 2 (c) case 3:
Fig. 8: Convex object grasped by concave fingers

grasp is stable. In Fig. 7, the solid lines depict k,, and
ke withrespectto k, with [, =0.1, f,=1.0,and
(@ p,=0.02, py=0.02,
(®) p,=0.02, p,=-0.04,
(©) p, =004, pr=0.02.
The solid lines asymptotically join with the dotted lines
(one-dimensional spring model). If k, is enlarged, the

stability is also enlarged. As a result, more energy is
required to control the fingers, as well as flexibility of the
grasp will be less. So it is important to derive the lowest
limit of k.

For Fig. 6 (a), k), is always negative and the grasp

is unstable. For Fig. 6(b), there are three cases shown in
Fig. 8 (see Appendix B for Details). Dotted line depicts
the circle with radius /. Case 1 (/,<pg,) is always stable.

Case 2 (p, <I, <—py) is unstable because object can
rotate and it does not return to initial position. Case 3
(Iy>-py) and Fig. 6 (c) are stable if we set
k, > fy/(y+p ). For the one-spring case, Fig. 6 (c)

and Fig. 8 (c) are always stable.
2.5. Stabilization conditions for 3-finger grasps

We derive the stiffness conditions for stabilization of
3-finger grasps. In this case, contact forces intersect at one
point. If the object frame X, is fixed at the intersection,

l,; becomes zero. Eq. (19) can be rewritten as
H=4K,'A" +BK B" —dcc"
where

Kx = diag[kxlskx27kx3]’ K; = diag[k;lykgz27k3)3]’

K, = Jxi iy, (22)
i —kyi(poi ¥+ Pf)

—sin@; —sinf@, -—sind;
A=| cosf  cosb, cos by },
L1 = Por Lxa = Po2 1x3 = Po3
cosf; cosf, cosb; 0
B=|sinf; sin@, sinf;|, ¢=|0
0 0 0 1

d:foi(lxi_poi)~

>



If rank(A4)=3 is satisfied, we can define the following

matrix P:
P=K,+BK B" -dec”, (23)
where B:=A"'B, ¢:=A4"'c.Letus define Qas
O=1{q;}=decc" -BK B". (24)
k1 is assigned to be
ki1 >qp1- (25)
kyy is assigned to be
q122
kyy >————+4q. (26)
31 —4q11

Finally, k)3 isassigned to be

2 2
SR LE (k1 —q11)+q137 (ky2 —422)+2912913923
y3

(K~ —q20)—q12°

+433, (27)
then the grasp is made stable. From Egs. (22) and (25),
k1 must satisfy the following condition

Sk,
S =k (Por +Py1)

In the similar way, we have the conditions of &
from Egs. (22), (26) and (27).

>dq11-

y2> ky3

3. Combining frictional and frictionless
grasps

In the previous section, we have analyzed the
frictionless grasps. Many authors have investigated the
frictional and the frictionless cases separately. But there
has been no previous work on the grasp stability by a
multifingered hand with combining frictional and
frictionless grasps. Fig. 9 depicts that the i-th finger makes
contact with the object for frictional and frictionless cases.

If the object moves to upward direction and rotates to
counterclockwise direction, for the frictional case, the
finger rotates to the upward direction. The position of the
finger is given by

;= poiCi/(Poi + P 1)
In the frictionless case, the finger slips to downward
direction. The position of the finger is given by B; of Eq.
(.

In this section, we combine the frictional and the
frictionless grasps by incorporating a new parameter A .
A=1 for frictional case and A=0 for frictionless case.
Combining the above two conditions yields

= (81i>8:) Finger i

vi=Aa; +(=)pB;. (28)
From Fig.9, the compression of the spring is given by
dyi =x; +(Poi +P )OSy, —(Poi +Pfi)s
8y =yi +(Poi +pf)siny;. (29)
By using Appendix C, the hessian becomes
T
. cos; | cos6;
H =Y 3k,| sing; | siné;

=l Ly Ly
= BR) | ;i lilnef"
(fxi = F) L = Poi | Lii = Poi
0 —sinég; —sin@; o’
+/12,0m'kyi{ 0| cos@ | +| cos§; | O] }
1= pyi L = Poi | 1
) ofol"
W) i = ED e ponlofo] L, 0
(Poi + P12) 11

where F; =k, (py; +p 5). The above stiffness matrix is

the combination of the frictional and the frictionless grasps.
If we substitute A =1, then our result is same to the
frictional case of Ref. [5]. On the other hand, if we
substitute A =0, then Eq. (30) becomes Eq. (19).

4. Conclusions

In order to consider contact force conditions, we
have introduced the frictionless two-dimensional virtual
spring model. And the stiffness matrix for the frictionless
planar grasp has been established. Then we have the
following results.
(i) If tangential spring k, tends to 0, then our

two-dimensional model becomes the one-dimensional
model and our result satisfies the result of Ref. [5].
(ii) The stability is proportional to k.

If k, is assigned to be a large value, much energy is



required to control the fingers.
(iii) We have also derived the lowest limit of k, to

stabilize the grasps.
(iv) Moreover we have unified the frictional and the

frictionless cases with incorporating the parameter A .

Its value is 1 and 0 respectively for the above cases.
The advantage of combining two kinds of grasp is that we
need not separate calculation for each case. Finally, it is
shown that the stability depends on the spring stiffness,
object and finger curvatures, as well as contact position
and forces.
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Appendix A
The 1st and the 2nd order derivatives of Egs. (5) and
(6) at initial condition are given by
Voyilo=Vxlo

V810 = Vyilo +(Poi +p 1)(VBil ).
VvT5xi|o = VVTxi|0 = (poi + Pﬁ)(VBi|0)(VBi|0)T,
where Vxl-|0 , Vyl-|0 , VVTxl-|0 are given by
Vxl-|0 =[cos8;,sinb;, p; sin¢l~]T,

Vyilo =[-sin6;.cos6;, p; cosg; 1",

00 0
vixlo=[00 0
00 — p;cosg;

Taking the 1st derivative of Eq. (7), we have

1
kyi(Oyi + §xai)T Vi +ky(tan B;)VS,; = kyivayi
cos” f;
If we consider the initial conditions, then we have
k..
VBily = - Vyily- 31)

i =kyi(Poi +P f)

Appendix B
For Fig. 6 (a), it is shown in Fig. 4 that y; and f;
always move to opposite direction due to two convex
curves. So {fy —k,(p, +p )} is negative.

For Fig. 6 (b), Kk, Iis.

(po+pr)<0 and {f—k,(p, +ps)}>0. Now we

investigate the conditions which make k.- positive.

positive  because

From Eq. (21), we have following two conditions:

Wif (@, +p)<0. (L —py)k, —%m,
x f

GIf (e +p,)>0, (U ~p )k, — f‘p )>0.
x f

From (i) and (ii), we have the following 4 cases shown in

Table 1. Physically, &, is always positive. For case 1,

fx/(lx+pf)<0, kg is positive for any k, >0. For

case 2, k, has no positive value. Case 3, if

y
0<k, < fx/(lx +p ), then the grasp is unstable. Case 4,

—py <ly <p, is practically impossible.

Table 1: Stabilization conditions

Case| Ix:ps | I,:p, |Condition for ky
1 Iy <-py I, <p, ky>fx/(lx+pf) stable
2 | L<=py | Li>p, | Ky <fx/(lx +Ps) |unstable
I.>=p, | I > ko> I + p,) |conditionally
3 x Py x = Po | %y fx/(x pf) stable
4 | Le>=py |1 <p, | ky<Sx/Ui+pPy) |unrealistic

Appendix C
From Eq. (29), we have

V5m’|0 = in|0 , VSyi|0 = Vyi|0 +(Poi +Pﬁ)(V“/i|0),

VT80 =VV x50 = (Poi + P ))(VTi]0)(VYi]0) -
From Eq. (28), we have

Vy, = A(Va)+(1- )V ),

Wiy = 2wVl +1-2)(VVIg),

—Poi_[o01].

VC{l'|0:
Poi t Pfi



