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Abstract

This paper establishes the general condition of the spring
stiffness that makes a spatial grasp stable by allowing
interference. Three orthogonal virtual springs, whose
stiffness is accomplished by computer control, are fixed at
the fingertip. The condition of the stiffness that makes the
stiffness matrix positive definite is analyzed. And an
assignment procedure of the spring stiffness is established.
1t is shown that the set of admissible values of the stiffness
is greatly extended, and assignment error of the stiffness
may be permitted. Therefore, the proposed method needs
less energy to grasp. The proposed method is simple and
is useful for practical use.
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1. Introduction
While a multifingered robot hand grasps an object,
the stability is of essential issue. That is, the hand must not
break the contact and not drop the object due to external
disturbances. In order to evaluate stability of the grasp,
potential energy approach has been proposed by many

authors. These methods evaluate whether the grasp will

return to the initial state after the disturbances disappeared.

Hanafusa et al. [1] analyzed the stability of
frictionless grasp of a multifingered hand with elastic
fingers. It was shown that the grasp is stable when the
potential energy stored in the grasp is local minimum.
Nguyen [2] proposed that stiffness of the real springs is
realized by that of virtual springs since the stiffness can be
controlled by computers. The stability of the grasp is
evaluated by positive definiteness of the stiffness matrix.

Kaneko et al. [3] discussed stability of frictional planar
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grasps and derived stiffness matrix of the grasp. Mimura et
al. [4] extended the analysis to 3-D grasps. Funahashi et al.
[5] considered the curvature of object and fingertip at the
contact points.

Kaneko, Mimura, and Funahashi established spring
stiffness that makes the grasp stable, since the stiffness can
be assigned any value. In their analyses, however, it is
assumed that there is no interference between translational
and rotational stiffness. So stiffness of fingertip is
restricted.

This paper will establish the stiffness condition of
the springs, which makes the spatial grasp stable by
allowing interference. Three virtual springs, which are
along the normal and the tangential at the contact point,
are fixed at the fingertip. First, we derive the stiffness
matrix of the frictional grasp. The matrix is influenced by
spring stiffness, initial grasping force, and so on. Secondly,
the condition of the stiffness that makes the stiffness
matrix positive definite is analyzed. Then an assignment
procedure of the spring stiffness is proposed. Finally, we
will describe the advantage of our method.

Fig.1 Grasping by a 3-fingered hand



Fig. 2: Orthogonal virtual stiffness at contact point

2. Problem formulation
2.1. Notations

We define the following symbols.
X, : object frame.

X 7+ i-th finger frame.
R+ orientation of X 5 with respectto X,.

f; : contact force.
r; : position of contact point with respect to X, .
0, : angle between x axisof ¥, and ;.

ke, ki, kg stiffness of springs fixed at i-th fingertip.

Yy
e=[x" =[x y z & n <]

object displacement due to external distrubances

2.2. Assumptions

An object is grasped by a 3-fingered hand as shown
in Fig. 1. Spatial virtual stiffness k,;, k,;, k. is fixed
at the fingertip as shown in Fig. 2. This paper discusses
the condition of the virtual springs k,;, ky;, k. which
make the grasp stable. For simplicity of discussions, we
make the following assumptions.
(A1) Contact between fingertips and the object is of point
contact type with friction.
(A2) Contact position r; and force f; are known.
(A3) The grasp system is in equilibrium at the initial
configuration.

(A4) 3-points of contact are not aligned.
(A5) The stiffness k,; is assigned to be along the vector

L kyi

grasp plane. k,, k

lies in the grasp plane, k,; perpendicular to the

i and k; are positive.

From Assumption (A3), initial grasping forces are

internal forces. X, is fixed at which f;'s intersect. The

x-y plane of X, lies in the grasp plane. An i-th fingertip

k

i and

coordinate X ; is fixed along the springs k,;,
k.
2.3. Stability of the grasp

Compression of the springs is given by

[0 0y 641" =R [x +{RE~I3}ri], (1)
where

RE) =R (OR, (MR (&), Ry=R.(6)).

r; =r[cosd; sinb; o1’ ,
fi =—filcos6; sing; 0", )

The potential energy stored in the grasp system is given by
n

1
Uzaz{kxi(é‘xi _"é‘xoi)2 +kyi§yi2 +kzi§zi2} E))
i=1

Using Taylor series of Eq. (2) around ¢ =0, we obtain

U:U(O)+€TVU (0)+%€TH (0)$+"', (4)
where
vzﬁiemé, H=vvIU eR®". (5)
&

The grasp is stable if and only if the energy U is local
minimum at the initial condition (&=0), that is, the
following two conditions are satisfied.

(i) VU|(0) =0.

(i1) H|(0) is positive definite.

From Assumption (A2), the condition (i) is always
satisfied. Consequently, the grasp is stable if the condition
(ii) is satisfied. The Hessian H|(g) is given by

(kg by 0 0 0 ky |
ki ky, 00 0 kye
0 0 k, ke k,y O

0 0 kg kg kg O ’
0 0 ky kye k 0
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where

ke = Y kyici” +kyisi2 ook =k =2 (ky tky)eis;
kye =kg :_zkyi’”isi s kyy :zkxisiz +kyici2

kyg“ :kcjy = zkyirici ke =2ky s

kz§ = kg“z =2 ks kz?] = kr]z =2 ki,



ke = Xlkar = [)nsi” kg = X (ary + fi)ricis;

kg = Xkt = fnci” s kgp = Ykyn® = firi

where ¢; =cosd; and s; =sind;.

The elements of H | (0) depend on the stiffness of
kyis

derive the condition of stiffness &, k.

k

is and k.. In the following sections, we will

and £k

zi >

which makes the matrices H | (0) Dpositive definite.

3. Stiffness Condition

Exchanging rows and columns of H | (0) Yyields

K, 0
K= ,
0 K,
where
kxx kxy kxé’ kzz sz kzr]
Ky=lky Ky kyo | Ky=\ kg ke key
ke kg ke ke kne kpp

The following two conditions are equivalent.
(i) H|q) ispositive definite.
(i) K; and K, are positive definite.
We will analyze the matrices K; and K, .

3.1. Condition of k,; and &
The matrix K can be rewritten as

—sp =8y =83 |ky 0 0 f—-51 ¢ 1

0 ky 0
7 0

Ki=laq ¢ ¢ —S$y €y 1

n r 0 ky3 —83 C3 13

1 €y C3 kxl 0 0 1 5 0

+ S1 Sy 83 0 kxz 0 Cy) 8y 0
0 O O O O kx:; C3 S3 0
5 0
->rfilofo001]
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=AK A" + BK .B" —dcc” (6)

where
Kx = diag[kxl,kxz,kx3], Ky = diag[kyl,kyz,ky3],

=8 =S8 =83 € 6 G
A= Cl (&) 3o, B= S1 Sy 83,
000

n n n

T 3
e=[0 0 17, d=3nf.
i=1

Since the matrix A is nonsingular from Assumption (A6),
we define P as
Plky k)= A""K 47"
nr pl ~T
=K, +BK B" —dce”, (7
where B:=A"'B and ¢:=47'¢. Then we have the

following condition.
K 1> 0

Therefore, we derive the condition of k,; and k

< P>0

which makes P(k,;,k,;) positive definite. From
P>0 < I1TPI>0 for I=[] I, K] =0,
we investigate [/ T pr . Then we obtain
1" PL=k 1\ + kol +k 5057
+ha{BTD1 + ko {(BTD)? + ks {(BTD3)°
~d("e)? @®
where (ET I); denotes the i-th element of the vector

BTI. Since, from Eq. (8), 1Pl s linear with respect to
ky and k), and is non-negative, there exists lowest

limit of k,; and k, . The coefficient of k, will be
zero for IeKerB! . The matrix P(ky;,ky;) is not
guaranteed to be positive definite by enlarging k,; .
However, k), is guaranteed. Consequently, the grasp is

stable if stiffness of the springs is assigned as follows.
First, k;'s are assigned any values, then we have

0 =1q;}=-BK B" +dcc" 9)
ky; is assigned to be
kyl > q11 (10)
Then k, isassigned to be
152
kyo >%+Q22 1
y1— 411
Finally, k3 isassigned to be
2 2
PR (ky1 —q11) + 49137 (ky2 —422) + 2912913923
3”7

2
(ky1 —q1)(ky2 —q22) =412

+433 (12)

We pick up two of k k and k3, these are in

ylo fy2o 3>

inverse proportion to each other. Therefore, possible



region of k; is given by upper area of the bound shown

in Fig. 3.

Fig. 3: possible set area of &,

Refs. [3]-[5] assumed
kxg :kgx =0, kyg =ké~y =0.
These mean no interference between translational and

rotational stiffness. So the stiffness &, ky,, and k3

y2>
are limited to the segment illustrated in Fig. 3. However,
our analysis shows that the grasp can be originally
stabilized in the wide area of stiffness. This means that we
can assign any values of stiffness from the set satisfying
Egs. (10) - (12) and assignment error of stiffness may be

permitted when a multifingered robot hand is controlled.

3.2. Condition of £ ;
The matrix K, can be represented by
1 1 1 Tk, 0 071 sy —ne
Ky =| sy mrsy; 1383 0 kypp O |1 msy —rey
—rncy —rcy —ne3 ||l 000 k|l i3s3 —rme;
3 0 0 0
=20 St - fireis:
=0 - fines;  finel”
=4k AT -C. (13)
Since, from Assumption (A4), the matrix A is nonsingular,
we have the following condition.
K,>0 o K, —-A7'caT>o0.
The grasp can be stabilized, if &,; are assigned to be

;2
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where C'={cjj}=dA""Cu".

Therefore all the values of stiffness are determined.
Due to lack of the space, numerical examples are not
described. From the examples, however, it is ensured that
our method can stabilize the grasp more easily with less

energy than the methods of Refs. [3]-[5].

4. Conclusion

We have investigated stabilization of the 3D grasp
of 3 fingered with friction contact. Three orthogonal
virtual stiffness are fixed to stabilize the grasp. We
obtained the general solution for stabilization of grasp.
The main results of this paper are as follows.

(1) We allow the interference between translational
and rotational stiffness. Hence, admissible region of
stiffness is greatly extended.

(2) We can assign the values of stiffness from the
wide area. The assignment error may be permitted. Our
method needs less energy to grasp.

Since the stiffness of the fingertip is accomplished
by computer control, the stabilization method proposed in
this paper is simple and is useful for the grasp by a
multifingered hand.
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