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Abstract 

This paper establishes the general condition of the spring 

stiffness that makes a spatial grasp stable by allowing 

interference. Three orthogonal virtual springs, whose 

stiffness is accomplished by computer control, are fixed at 

the fingertip. The condition of the stiffness that makes the 

stiffness matrix positive definite is analyzed. And an 

assignment procedure of the spring stiffness is established. 

It is shown that the set of admissible values of the stiffness 

is greatly extended, and assignment error of the stiffness 

may be permitted. Therefore, the proposed method needs 

less energy to grasp. The proposed method is simple and 

is useful for practical use. 

Key Words: grasp stability, potential energy approach, 

stiffness condition, assignement procedure, less energy. 

 

1. Introduction 

     While a multifingered robot hand grasps an object, 

the stability is of essential issue. That is, the hand must not 

break the contact and not drop the object due to external 

disturbances. In order to evaluate stability of the grasp, 

potential energy approach has been proposed by many 

authors. These methods evaluate whether the grasp will 

return to the initial state after the disturbances disappeared. 

     Hanafusa et al. [1] analyzed the stability of 

frictionless grasp of a multifingered hand with elastic 

fingers. It was shown that the grasp is stable when the 

potential energy stored in the grasp is local minimum. 

Nguyen [2] proposed that stiffness of the real springs is 

realized by that of virtual springs since the stiffness can be 

controlled by computers. The stability of the grasp is 

evaluated by positive definiteness of the stiffness matrix. 

Kaneko et al. [3] discussed stability of frictional planar 

grasps and derived stiffness matrix of the grasp. Mimura et 

al. [4] extended the analysis to 3-D grasps. Funahashi et al. 

[5] considered the curvature of object and fingertip at the 

contact points. 

     Kaneko, Mimura, and Funahashi established spring 

stiffness that makes the grasp stable, since the stiffness can 

be assigned any value. In their analyses, however, it is 

assumed that there is no interference between translational 

and rotational stiffness. So stiffness of fingertip is 

restricted. 

     This paper will establish the stiffness condition of 

the springs, which makes the spatial grasp stable by 

allowing interference. Three virtual springs, which are 

along the normal and the tangential at the contact point, 

are fixed at the fingertip. First, we derive the stiffness 

matrix of the frictional grasp. The matrix is influenced by 

spring stiffness, initial grasping force, and so on. Secondly, 

the condition of the stiffness that makes the stiffness 

matrix positive definite is analyzed. Then an assignment 

procedure of the spring stiffness is proposed. Finally, we 

will describe the advantage of our method. 
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 Fig.1 Grasping by a 3-fingered hand 
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Fig. 2: Orthogonal virtual stiffness at contact point 

 

2. Problem formulation 

2.1. Notations 

     We define the following symbols. 

oΣ : object frame. 

fiΣ : i-th finger frame. 

fiR : orientation of fiΣ  with respect to oΣ . 

if : contact force. 

ir : position of contact point with respect to oΣ . 

iθ : angle between x axis of oΣ  and ir . 

xik , yik , zik : stiffness of springs fixed at i-th fingertip. 

[ ]TTTT zyx ζηξ== ][ ξξξξεεεε x : 

   object displacement due to external distrubances 

 

2.2. Assumptions 

     An object is grasped by a 3-fingered hand as shown 

in Fig. 1. Spatial virtual stiffness xik , yik , zik  is fixed 

at the fingertip as shown in Fig. 2. This paper discusses 

the condition of the virtual springs xik , yik , zik  which 

make the grasp stable. For simplicity of discussions, we 

make the following assumptions. 

(A1) Contact between fingertips and the object is of point 

contact type with friction. 

(A2) Contact position ir  and force if  are known. 

(A3) The grasp system is in equilibrium at the initial 

configuration. 

(A4) 3-points of contact are not aligned. 

(A5) The stiffness xik  is assigned to be along the vector 

ir , yik  lies in the grasp plane, zik  perpendicular to the 

grasp plane. xik , yik  and zik  are positive. 

     From Assumption (A3), initial grasping forces are 

internal forces. oΣ  is fixed at which if 's intersect. The 

x-y plane of oΣ  lies in the grasp plane. An i-th fingertip 

coordinate fiΣ  is fixed along the springs xik , yik  and 

zik .  

 

2.3. Stability of the grasp 

     Compression of the springs is given by 
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The potential energy stored in the grasp system is given by 
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Using Taylor series of Eq. (2) around 0=ε , we obtain  
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where 
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The grasp is stable if and only if the energy U is local 

minimum at the initial condition )0( =ε , that is, the 

following two conditions are satisfied. 

     (i)  0)0( =∇U . 

     (ii)  )0(H  is positive definite. 

From Assumption (A2), the condition (i) is always 

satisfied. Consequently, the grasp is stable if the condition 

(ii) is satisfied. The Hessian )0(H  is given by 
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where iic θcos=  and iis θsin= . 

     The elements of )0(H  depend on the stiffness of 

xik , yik , and zik . In the following sections, we will 

derive the condition of stiffness xik , yik , and zik , 

which makes the matrices )0(H  positive definite. 

 

3. Stiffness Condition 

     Exchanging rows and columns of )0(H  yields 
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The following two conditions are equivalent. 

     (i) )0(H  is positive definite. 

     (ii) 1K  and 2K  are positive definite. 

We will analyze the matrices 1K  and 2K . 

 

3.1. Condition of xik  and yik  

     The matrix 1K  can be rewritten as 
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Since the matrix A is nonsingular from Assumption (A6), 

we define P as 
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following condition. 
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where i
TB )
~
( l  denotes the i-th element of the vector 

l
TB
~

. Since, from Eq. (8), ll PT  is linear with respect to 

xik  and yik  and is non-negative, there exists lowest 

limit of xik  and yik . The coefficient of xik  will be 

zero for TBKer
~

∈l . The matrix ),( yixi kkP  is not 

guaranteed to be positive definite by enlarging xik . 

However, yik  is guaranteed. Consequently, the grasp is 

stable if stiffness of the springs is assigned as follows. 

First, xik 's are assigned any values, then we have 
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1yk  is assigned to be  
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We pick up two of 1yk , 2yk , and 3yk , these are in 

inverse proportion to each other. Therefore, possible 



region of yik  is given by upper area of the bound shown 

in Fig. 3. 

  
 Fig. 3: possible set area of yik  

 

     Refs. [3]-[5] assumed 

 0== xx kk ζζ , 0== yy kk ζζ . 

These mean no interference between translational and 

rotational stiffness. So the stiffness 1yk , 2yk , and 3yk  

are limited to the segment illustrated in Fig. 3. However, 

our analysis shows that the grasp can be originally 

stabilized in the wide area of stiffness. This means that we 

can assign any values of stiffness from the set satisfying 

Eqs. (10) - (12) and assignment error of stiffness may be 

permitted when a multifingered robot hand is controlled.  

 

3.2. Condition of zik  

     The matrix 2K  can be represented by 
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Since, from Assumption (A4), the matrix A is nonsingular, 

we have the following condition. 
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The grasp can be stabilized, if zik  are assigned to be 
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     Therefore all the values of stiffness are determined. 

Due to lack of the space, numerical examples are not 

described. From the examples, however, it is ensured that 

our method can stabilize the grasp more easily with less 

energy than the methods of Refs. [3]-[5]. 

 

4. Conclusion 

     We have investigated stabilization of the 3D grasp 

of 3 fingered with friction contact. Three orthogonal 

virtual stiffness are fixed to stabilize the grasp. We 

obtained the general solution for stabilization of grasp. 

The main results of this paper are as follows. 

     (1) We allow the interference between translational 

and rotational stiffness. Hence, admissible region of 

stiffness is greatly extended. 

     (2) We can assign the values of stiffness from the 

wide area. The assignment error may be permitted. Our 

method needs less energy to grasp. 

     Since the stiffness of the fingertip is accomplished 

by computer control, the stabilization method proposed in 

this paper is simple and is useful for the grasp by a 

multifingered hand. 
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