International Symposium on Advanced Science and Technology in Experimental Mechanics

Study on Accuracy Evaluation of Three-Dimensional Visualization Measurement using Near Field Stereo System Based on Digital Image Correlation Methodology

Kanazawa Institute of Technology M.UNEDA, M.TOSHIMA, K.ISHIKAWA

5th ISEM 2010 in JAPAN Date Nov.4-7,2010

1/2

Objective

This study aims to evaluate the measurement accuracy of the threedimensional visualization measurement method using the near field stereo system based on the digital image correlation (DIC) method.

Approach

- We propose a technique using the near field stereo system based on the DIC method.
- We confirm the effectiveness of the proposed method at the near field three-dimensional visualization measurement.

International Symposium on Advanced Science and Technology in Experimental Mechanics

Study on Accuracy Evaluation of Three-Dimensional Visualization Measurement using Near Field Stereo System Based on Digital Image Correlation Methodology

5

5th ISEM 2010 in JAPAN Date Nov.4-7,2010

Experimental method

- We evaluated the measurement accuracy of the three-dimensional visualization measurement by using both the official focal length f_0 and the actual focal length f_0
- We evaluated the three-dimensional visualization difference of out-of-plane **deformation** Soccurrence before and after.

We calculated

the difference between the three-dimensional visualization results at before and after of out-of-plane deformation

 δ was given by movement of the digital camera.

We photographed the left and right images by changing the positions of the digital camera.

Measurement results

Effect of considering the actual focal length f on the measurement accuracy

Interval between cameras L=10mm

Principle of conventional method Proposed method 10 mm

246.2 mm 5 246.5 0 -5

Experimental conditions

Number	1
Camera	Left Right
Focused distance Z_D [mm]	246.5
Official focal length f_0 [mm]	60
Actual focal length f [mm]	88.07
Interval between cameras L [mm]	10, 20
Angle of camera [°]	0
Size of 1pixel [mm]	10.96
Set value of out-of-plane deformation δ mm	+1

Effect of interval between cameras on the measurement accuracy

L=20mm

Proposed method

Conclusion

The measurement accuracy, of not only the three-dimensional visualization but also the out-of-plane deformation value, with above the actual focal length f conclusion is improved as compared to one the official focal length f_0 conclusion.