progress report on the E07 experiment

Systematic Study of Double Strangeness System with an Emulsion-Counter Hybrid Method

NAGARA event (KEK-E373)

10 10 u*m* **Kyoto:** E.Hayata, M.Hayata, M.Hirose, **K.Imai**, S.Kamigaito,

A.Okamura, K.Tanida, M.Togawa, T.Tsunemi

Gifu: M.Kawasaki, K.Nakazawa, K.T.Tint, M.Ukai, T.Watanabe

Tohoku: K.Hosomi, T.Koike, Y.Ma, K.Shirotori, H.Tamura

AMU: R.Hasan

BNL: R.E.Chrien

CIAE: Y.Y.Fu, C.P.Li, Z.M.Li, J.Zhou, S.H.Zhou, L.H.Zhu

Chonnam: J.Y.Kim

Dongshin: M.Y.Pac

Fukui: T.Yoshida

Gyeongsang: K.S.Chung, S.H.Kim, J.S.Song, C.S.Yoon

KEK: M.leiri, H.Noumi, N.Saito, M.Sekimoto, H.Takahashi

Nagoya: K.Hoshino, T.Kawai, B.D.Park, T.Sato, T.Watabe

NIRS: N.Yasuda

OsakaCity: K.Yamamoto

Pusan: J.K.Ahn, S.Y.Ryu

Shanxi: D.H.Zhang

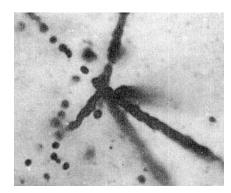
Toho: C.Fukushima, M.Kimura, S.Ogawa, H.Shibuya

UCL: D.H.Davis, D.Tovee

U.Houston: Ed.Hungerfold

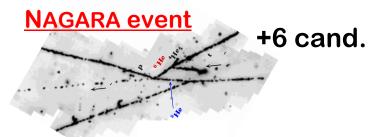
U.New-Mexico: B.Bassalleck

Systematic Study of Double Strangeness System with an Emulsion-Counter Hybrid Method

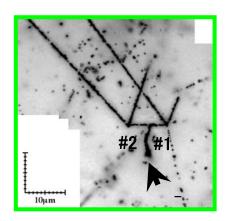

J-PARC E07

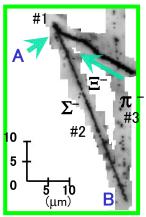
K.NAKAZAWA (Gifu Univ.)

PS-E373

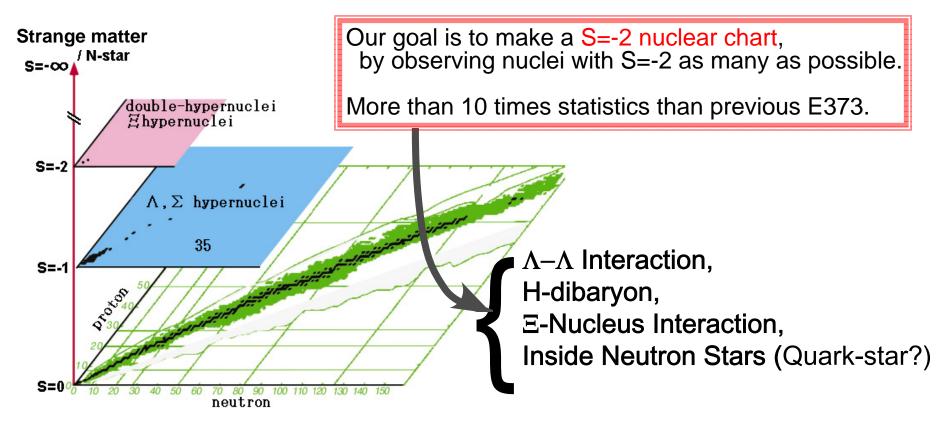

PS-E176

in ~80 Estops



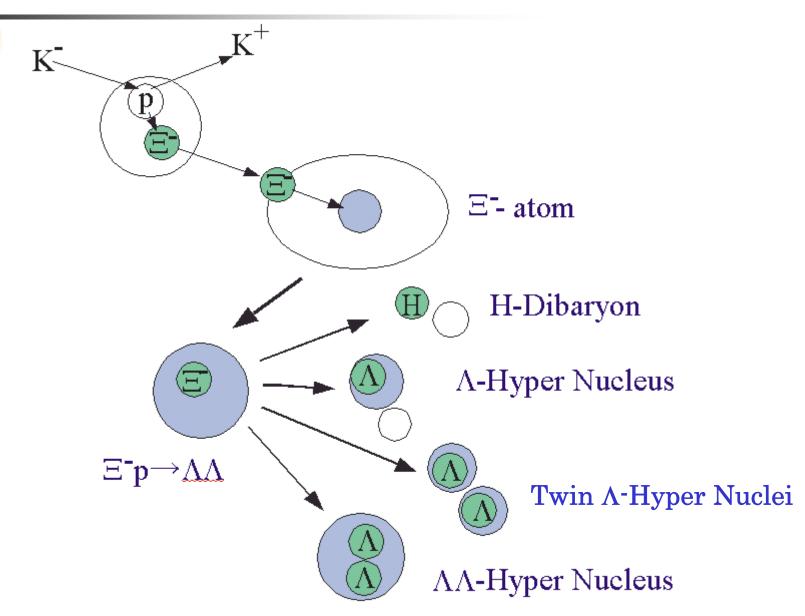

Double-Hypernucleus with sequential decay surely exists.

in ~700 Estops


 $B_{\Lambda\Lambda} = 1.01 \pm 0.20$ MeV for ${}_{\Lambda}{}^{6}{}_{\Lambda}He$

Motivation of the E07 experiment

detection of 10^2 or more candidate events with S = -2, \rightarrow Discovery of 10 or more nuclear species.

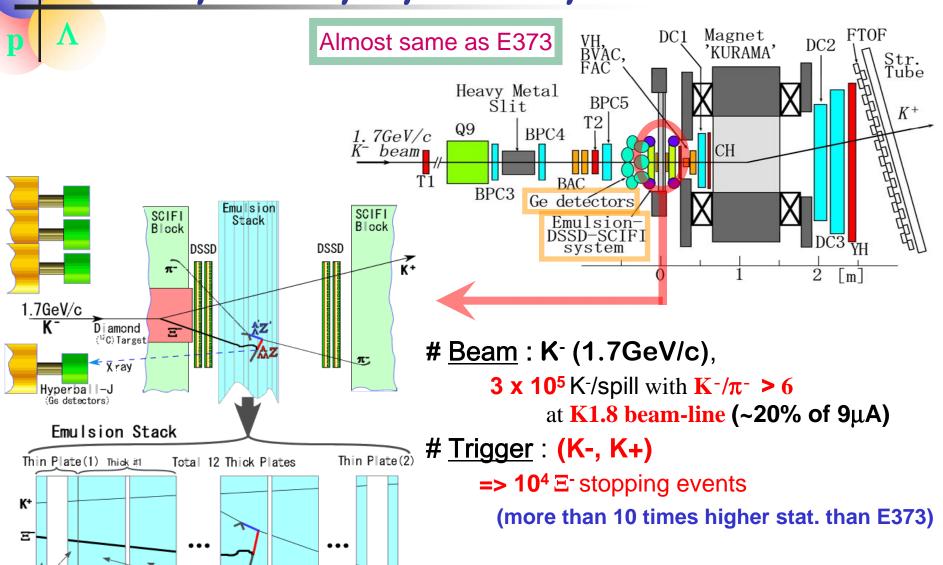


Physics

- 1) S=-2 nuclear chart by $\sim 10^2 \text{ AAZ}$ via 10^4 E^- -stopping events.
 - => $\Delta B_{\Lambda\Lambda}$ of several nuclides will provide definitive information on $\Lambda\Lambda$ interaction and structure of S=-2 nuclei.
- 2) H-dibaryon state in S=-2 system?
 - => measure A-dependence of ΔBΛΛ & Σ-decay mode of ΛΛΖ.
- 3) E⁻-nucleus potential
 - => detection of twin hypernuclei
 - => First measurement of X-ray of = atom

n

Production of S=-2 Nuclei



Emulsion t=0.2mm, 0.04mm

Polystyrene film for emulsion support Emulsion

Setup of the proposed experiment

Summary The 1st PAC on Jun.30,2006

- # Readiness of the Experiment ('Kakenhi / Tokubetsu-Suishin': \$3M)
 - + DSSD (Double-sided Si Strip Detector)
 - + Scanning system (6=>10 systems : high speed and better efficiency)
 - **+ Emulsion** (50%)
 - + Hyperball-J (other budgets)
- # Requested Beam and Time (K-, K+) trigger

 $3 \times 10^{5} \text{ K}^{-}/\text{spill}$ with $\text{K}^{-}/\pi^{-} > 6$ at K1.8 beam-line (~20% of 9µA) 150 hours for detector tuning and 600 hours for beam exposure

Detector: DSSD, Emulsion, Hyperball, KURAMA spectrometer, etc. Almost Ready

List of questions from the PAC and our reports on today

1. Spectrometer magnet: KURAMA

1st PAC minutes [Jul. 2, 2006]

==> FIFC [Nov. 2006]

==> 2nd PAC minutes [Jan. 12, 2007]

The PAC received a report from the FIFC committee on the evaluation of the experiment. There is no major technical problem in the experiment. The FIFC judges that the installation of Kurama magnet is both possible and preferable for acquiring more statistics.

TODAY: Setting status of Kurama and SKS magnet at the K1.8 line

2. Alignment between the DSSD and the emulsion

FIFC [Nov. 2006]

==> 2nd PAC minutes [Jan. 12, 2007]

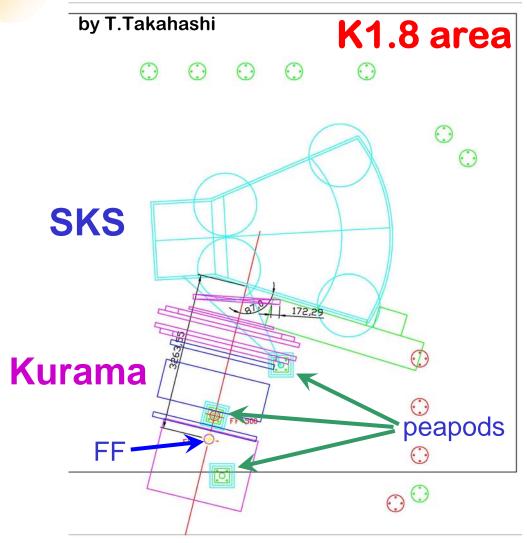
The FIFC considers that good alignment between the two DSSD detectors and the emulsion stack is important for an efficient scanning. The strategy of the alignment procedure is, however, not well documented and reviewed.

Originally, there was nothing problems [PS-E176(KEK)]

TODAY: 2-1. Review of alignment in PS-E176(KEK)

2-2. test of New alignment method

2-3. Performance of Developed DSSD (Double-sided Si Strip Detector)


3. Our strategy

budget, preparation schedule

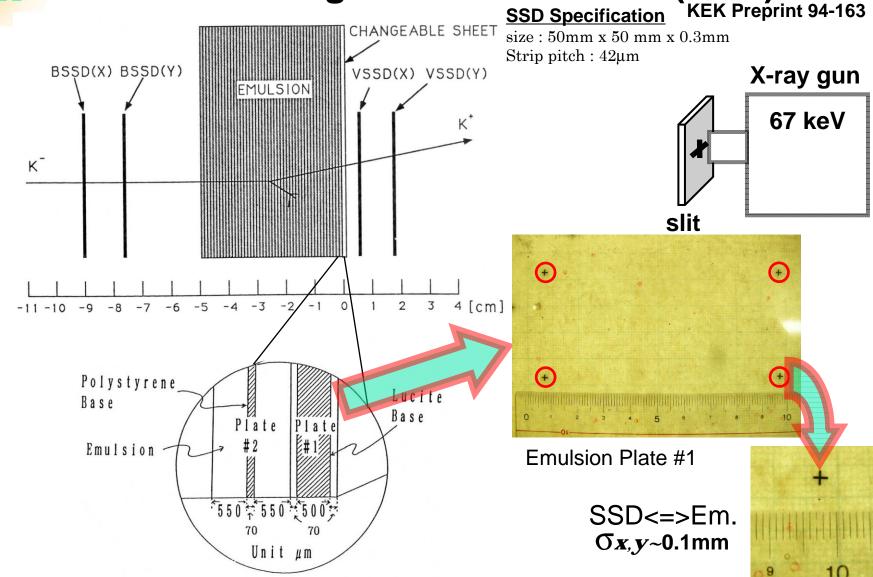
n

Λ

1. Setting status of Setting status of Kurama and SKS magnet at the K1.8 area

Three peapods shall be set in suitable position for each experiments using SKS.

We can locate
Kurama in K1.8
with SKS.

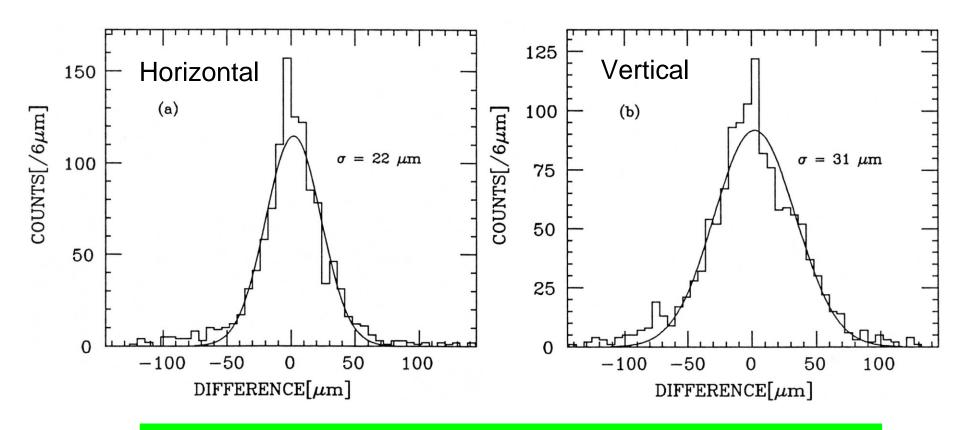

Plan (prof. T.Takahashi)

in FY08: transfer SKS from KEK to J-PARC.

2. Alignment between

the DSSD and the emulsion

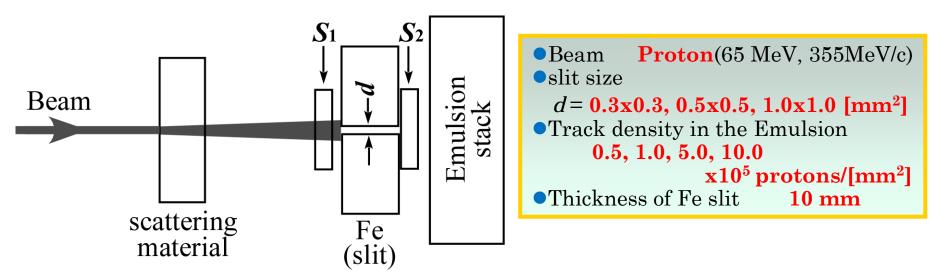
2-1. Review of alignment in PS-E176 (KEK)



Position accuracy distribution. [Final]

SSD=> (Em sheet) => Em stack.

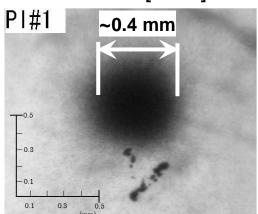
after the calibration using a few thousand tracks

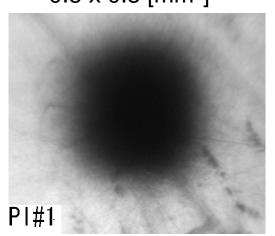

Alignment using X-ray is well applicable for E07 as PS-E176.

2-2. test of New alignment method

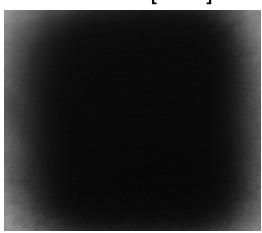
- 1. X-ray generator is so heavy to be installed in beam line.
- 2. Safety for the exchange of the emulsion stacks.

==> beam spot painting on DSSD and the emulsion


Test exp. of beam spot at RCNP- R80 (Dec., 2007)


Beam spot (R80 at RCNP)

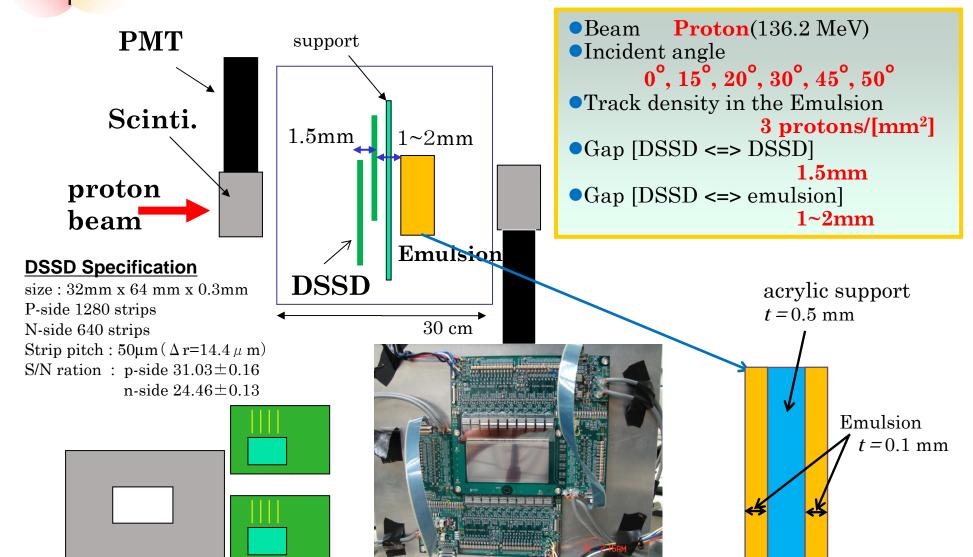
exposed beam density = 10×10^5 [protons/mm²]


0.3 x 0.3 [mm²]

1.0 x 1.0 [mm²]

Accuracy $0.4/sqrt(12) \sim 0.1 [mm]$

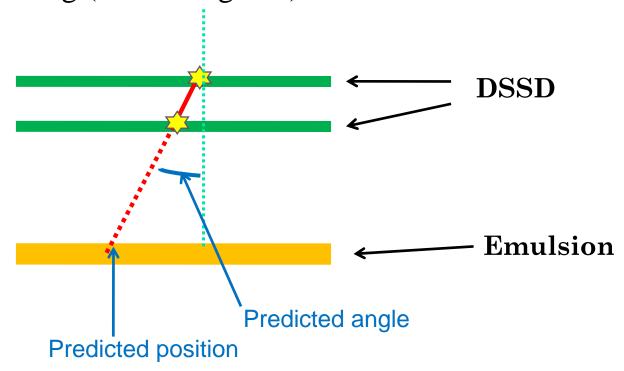
good enough alignment for the experiment


Yield estimation at K1.8 @30GeV 9μA (Sanford-Wang, TRANSPORT & TURTLE)

400 MeV/c: 40 spills 500 MeV/c: 20 spills beam time for 10 x10⁵ [protons/mm²] through 0.3x0.3 [mm²] slit

Λ

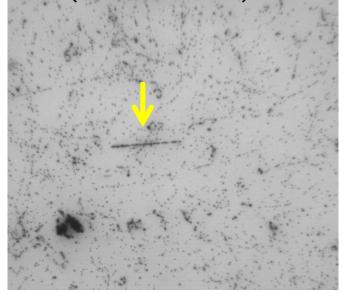
2-3. performance of developed DSSD


Test exp. of DSSD at RCNP- R78 (Dec.,2006)

Track reconstruction

Condition

- Signal ADC $> 3\sigma_{\text{noize}}$
- Clustering (ADC weighted)

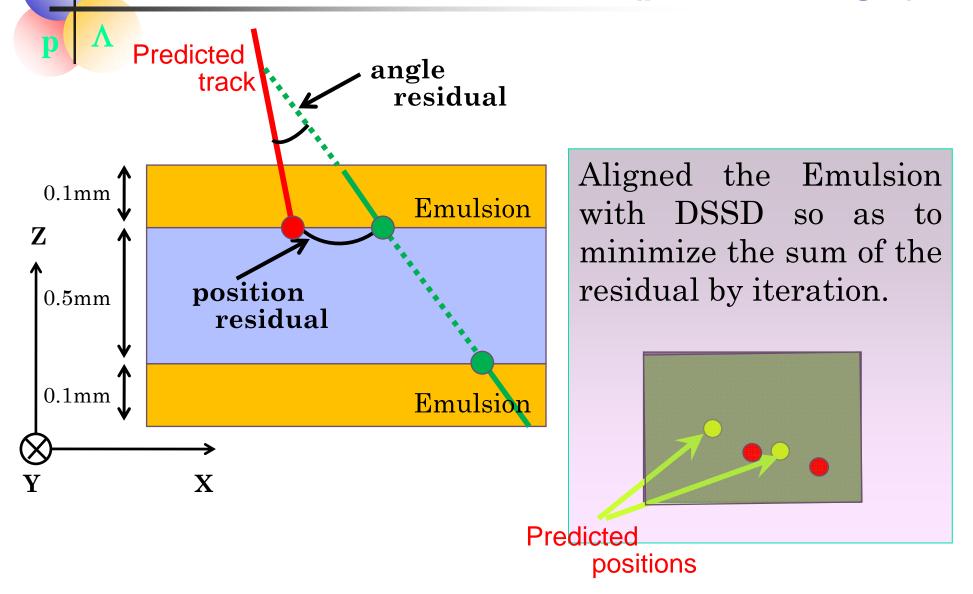

n

Scanning of protons in the emulsion

Emulsion Plate

7 cm 3 cm

Microscope image of proton track (incident: 10°)



 \sim 100 μ m

Scanned ~100 tracks / each angle exposure

1

Measurement of residuals (position, angle)

Result of residuals (position, angle)

	Positio		n (µm)	Angle	(mrad)	
		X	y	X	y	
	0 o	19.9 +/- 1.8	19.5 +/- 1.9	19.1 +/- 1.8	11.5 +/- 1.0	
	15°	16.4 +/- 1.4	25.6 +/- 0.8	8.9 +/- 0.8	11.4 +/- 0.7	
E07	25°	45.3 +/- 6.8	26.0 +/- 2.3	10.6 +/- 0.8	13.8 +/- 1.2	
E07	30°	42.3 +/- 6.6	15.7 +/- 1.6	12.3 +/- 3.7	11.8 +/- 1.7	
	45°	41.3 +/- 5.0	21.0 +/- 2.2	7.6 +/- 0.8	15.3 +/- 1.4	
		20 -	- 45 DS	SD 10 -	- 20	X-ray ?
E37 N.I.M. A (1998)	417	194 (163)	113 Fib	er- 44 ndle (-)	25 (-)	X-ray
E1		~ 1 94-163(22)	00 ss	SD T	-	X-ray

for E-tracking S/N ~ 1/3

good enough!!

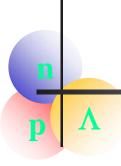
3. Strategy

3-1. Budget application for FY08-12

	x10 ⁶ yen		Funding Category [JSPS : Kakenhi]		
Emulsion	35	1	Basic		
Post Doc.	12	^	S		
Tank for development	I 8		¥ 180 M		
chiller	7	Basic ,.			
Chemicals for development	10	¥3	ncluding BOM for Counters,		
Waste liquid treatment	7	¥ 46 M	Chambers, etc.		
Expendable supplies	2	1	50M for icroscope)		

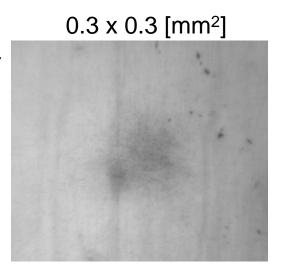
3-2. Our preparation schedule

(related part to the Emulsion work)

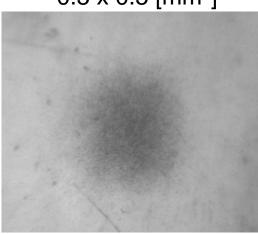

		FY08	FY09	FY10	FY11	FY12			
R&D	R&D of Development(現像)								
Test	Test of Pouring system(乾板製作)								
Test	Test of Uniform development (均一現像)								
Brush up scanning software									
J-PARC	Making Emulsion pl	ates Beam exp	oosure						
	Developm	nent of exposed emuls	sion						
	Scan	ning and analysis of d	ouble hypernucle	ei					
Summarize the experiment and the results									

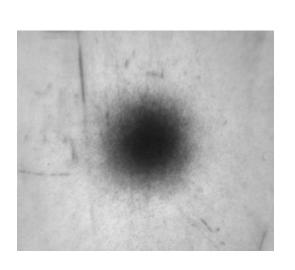
our beam request \cdots 20% of 9μ A Kurama use \cdots E07 & E03 (K1.8)

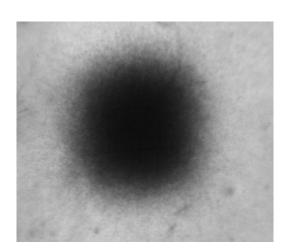
Summary

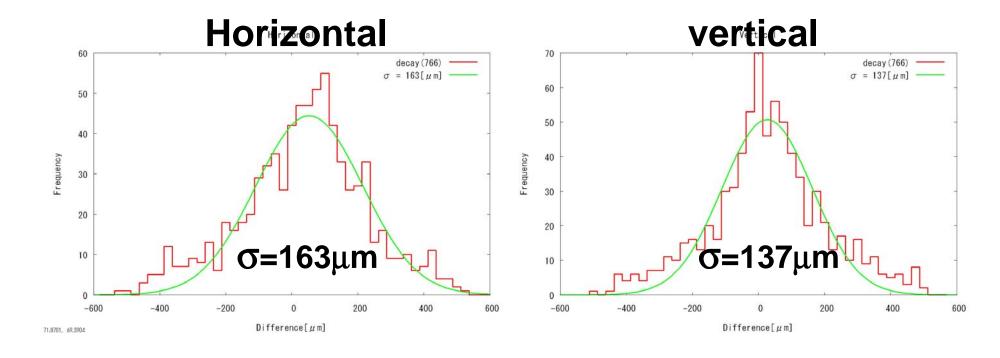

- Kurama magnet shall be located in K1.8 area without disturbance.
- 2. Alignment between DSSD and Emulsion has no problem.
 - 2-1. It is reliable using X-ray as PS-E176.
 - 2-2. Beam spot method can be effective.
 - 2-3. DSSD detectors are well working.
- 3. Budgetary application has been done for FY08-12. Our preparation is going for the beam exposure on FY09.

Extra slides

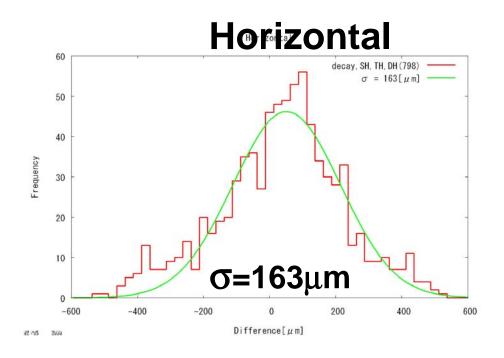


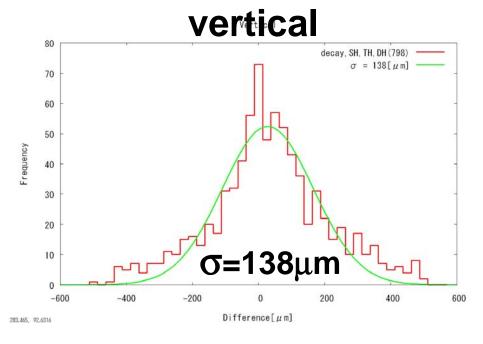

proton density [/mm²]


1.0 x 10⁵



 5.0×10^5

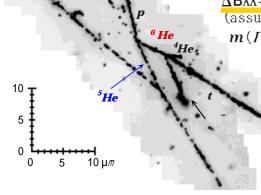

Fiber-Em position accuracy E373 \(\xi\) cands.


Decay events (all 766)

Decay events (766) / SH+TH+DH(32)

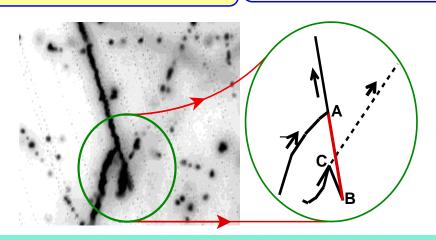
Double-Hypernuclei found by KEK-E373

47 single-hypernuclear events


- → ~ 600 events Ξ⁻ capture at rest
- 6 double-hypernuclei
- 2 twin-hypernuclei
- 1 Σ -emission

NAGARA event

44 He double-hypernucleus
Unique interpretation!! $\mathcal{E}^{-+}^{12}C \rightarrow {}^{6}_{\Delta}He + {}^{4}He + t$ ${}^{6}_{\Delta}He \rightarrow {}^{5}_{\Delta}He + p + \pi$ Lambpha ${}^{37, 212502(2001)}$


 $m(\stackrel{6}{\mbox{M}} \text{He}) = 5951.82 \pm 0.54 \text{MeV}$ $\text{Baa} = 7.25 \pm 0.19 \stackrel{+0.18}{-0.11} \text{MeV}$ $\Delta \text{Baa} = 1.01 \pm 0.20 \stackrel{+0.18}{-0.11} \text{MeV}$ (assumed Bg = 0.13 MeV)

 $m(II) \ge 2223.7 \text{ MeV/}c^2$ (90% C.I..)

<u>Demachi-yanagi event</u>

* two body case at point A $\Xi^{-}+^{12}C \rightarrow ^{10}Be+t$ or $^{10}Be^*+t$ *three body case at point A $\Xi^{-}+^{14}N \rightarrow ^{13}B + p + n$

 Δ B_{ΛΛ} : ΛΛ Interaction Energy Δ B_{ΛΛ} = B_{ΛΛ}($_{\Lambda}$ ^A $_{\Lambda}$ Z) - 2B_Λ($_{\Lambda}$ ^{A-1} $_{\Lambda}$ Z)

Found

Weakly attractive $\Lambda\Lambda$ Interaction !

Hybrid Method ==> Reliable