Systematic Study of Double Strangeness System with an Emulsion-Counter Hybrid Method

NAGARA event (KEK-E373)

Kyoto:	E.Hayata, M.Hayata, M.Hirose, <u>K.Imai</u> , S.Kamigaito, N.Saito, K.Tanida, M.Togawa, T.Tsunemi, C.J.Yoon
Gifu:	M.Kawasaki, H.Nakamura, <u>K.Nakazawa</u> , K.T.Tint, T.Watanabe
Tohoku:	K.Hosomi, T.Koike, Y.Ma, K.Shirotori, <u>H.Tamura</u> , M.Ukai
AMU:	R.Hasan
BNL:	R.E.Chrien
CIAE:	Y.Y.Fu, C.P.Li, Z.M.Li, J.Zhou, S.H.Zhou, L.H.Zhu
Chonnam:	J.Y.Kim
Dongshin:	M.Y.Pac
Fukui:	T.Yoshida
Gyeongsang:	K.S.Chung, S.H.Kim, J.S.Song, C.S.Yoon
KEK:	M.leiri, H.Noumi, M.Sekimoto, H.Takahashi
Nagoya:	K.Hoshino, T.Kawai, B.D.Park, T.Sato, T.Watabe
NIRS:	N.Yasuda
OsakaCity:	K.Yamamoto
Pusan:	J.K.Ahn, S.Y.Ryu
Toho:	C.Fukushima, M.Kimura, S.Ogawa, H.Shibuya
UCL:	D.H.Davis, D.Tovee
U.Houston:	Ed.Hungerfold
U.New-Mexico:	B.Bassalleck

Motivation of the proposed experiment

A detection of 10^2 or more candidate events with S = -2, \rightarrow Discovery of 10 or more nuclear species.

How to produce S=-2 Systems

Λ

via Ξ atom (KEK-E373) **Direct process** K_{\checkmark}^{+} K^+ **Double-Hypernucleus** K Ξ 0 **Twin-Hypernucleus** $\Xi^- p$ 3 Cands. +28 MeV-> •Ξ Κ A **A**^{*}∕(S= −2) • Ξ¯atom •• or H

J-PARC.PAC Double-Hypernuclei found by KEK-E373

- **4**7 single-hypernuclear events
- \rightarrow ~ 600 events Ξ^- capture at rest
- 6 double-hypernuclei
- 2 twin-hypernuclei
- 1 Σ -emission

<u>Demachi-yanagi event</u>

Jun.30,2006

 $\Delta B_{\Lambda\Lambda} : \Lambda\Lambda \text{ Interaction Energy}$ $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda}({}_{\Lambda}{}^{A}{}_{\Lambda}Z) - 2B_{\Lambda}({}^{A-1}{}_{\Lambda}Z)$ Found Weakly attractive $\Lambda\Lambda$ Interaction !

Hybrid Method ==> <u>Reliable</u>

ΔBAA & nuclear structure

To determine $\Lambda\Lambda$ interaction independent on the nuclear structure, we need to measure **A-dependence** of $\Delta B_{\Lambda\Lambda}$.

H-dibaryon resonance (?) near the ΛΛ threshold

 $\Lambda\Lambda$ invariant mass

What is the ground state of S=-2 nuclei?

ΛΛ or **H-dibaryon state** or **mixed** in nuclei? |H> = \sqrt{a} |ΛΛ> + \sqrt{b} |ΞN> - \sqrt{c} |ΣΣ>

A-dependence of ΔBΛΛ
 Decay branching ratio
 [S=-2] => Σ⁻p, Λn

3. Higher statistics for $\Lambda\Lambda$ spectrum is expected.

Decay mode (X => $\Sigma^{-}+p$) <..... Theoretical Prediction. X : $\Lambda\Lambda$ (~10⁻³), H-dibaryon (several tens' %).

E373 data : One event for the Decay ($X[S=-2] \Rightarrow \Sigma^{-}\rho$) **Proposed experiment** can provide $Br(X[S=-2] \Rightarrow \Sigma^{-}\rho)$ with more than 10 times higher statistics.

E-nucleus potential

1) Level energy of Ξ^- hyperon in nucleus by twin-hypernuclei.

A.Ichikawa et al., Phys. Lett.B (2001)

2) The first measurement of Ξ -atomic X rays

employing "Hyperball-J" (Ge detector array).

Energy shift ¬> Ξ- nucleus potential ¬> Ξ-N interaction

High accuracy ← P03 K. Tanida

~ 0.2 keV (FWHM) < Expected energy shift 0.3 – 3 keV (by Friedman, Gal) Very low background

<u>Clean Ξ^{-} stopping events</u> identified in emulsion.

Setup of the proposed experiment

Development #1 Double-sided Si Strip Detector (DSSD)

50 μ m strip pitch -> 16 μ m resolution readout; VA-chip Energy spectrum for β-ray (⁹⁰Sr) Equivalent electron noise; 600~1000 S/N;23~34 for MIPS

PS-T594 : + Track connection (DSSD ⇔ Emulsion) using the last beam at KEK-PS, on mid March + Analysis is going-on.

Development #3

Emulsion scanning system

<u>New system</u>

Area : $35 \times 35 \text{ cm}^2 \rightarrow 40 \times 40 \text{ cm}^2$ Light : Halogen Lamp \rightarrow Ultra High-bright LED speed : $\times 2$ tracking eff. : $\times 1.5$ # of System : 6 (old, E373) \rightarrow 7 (new) + 3 (old)

Scanning for this experiment: more speed-up [× 6 than old system](1) Develop scanning algorism(2) Optimize the area for scanning

Development #4 Production method of emulsion

New method of Emulsion gel. production For the proposed exp., amount of emulsion gel => 2.6 tons Fuji-film needs one year or more by conventional way.

Using the production lines for commercial films

Tested by particle beams with good results. Half of necessary emulsion has been made! Emulsion cost will be saved 50%

β Summary **β** Λ

Physics

- 1) S=-2 nuclear chart by $\sim 10^2 \text{ AAZ}$ via $10^4 \Xi^-$ -stopping events.
 - => $\Delta B_{\Lambda\Lambda}$ of several nuclides will provide definitive information on $\Lambda\Lambda$ interaction and structure of S=-2 nuclei.
- 2) H-dibaryon state in S=-2 system?
 - => measure <u>A-dependence of $\Delta B_{\Lambda\Lambda}$ & Σ -<u>decay mode of $\Lambda\Lambda Z$.</u></u>
- 3) Ξ⁻-nucleus potential
 - => detection of twin hypernuclei
 - => First measurement of X-ray of Ξ atom

Summary

Readiness of the Experiment ('Kakenhi / Tokubetsu-Suishin' : \$3M)

- + DSSD (Double-sided SiStrip Detector)
- + Scanning system (6=>10 systems : high speed and better efficiency)
- + Emulsion (50%)
- + Hyperball-J (other budgets)
- # Requested Beam and Time (K-, K+) trigger

3 x 10⁵ K⁻/spill with K⁻/ π ⁻ > 6 at K1.8 beam-line (~20% of 9µA) 150 hours for detector tuning and 600 hours for beam exposure

<u>Detector</u> : DSSD, Emulsion, Hyperball, KURAMA spectrometer, etc.
Almost Ready