断層の破壊方向を考慮した即時広域強震動分布推定法の検討

Rapid Estimation of Seismic Intensity Distribution in Urban Areas in Consideration of Fault Rupture Direction

久世 益	充(岐阜大学)	杉戸 真太 (岐阜大学)
能局 畅	话(岐阜大字)	古本 古倫 (岐阜大字)
Masumitsu KUSE :	Graduate Schoo	ol of Engineering, Gifu University
	1-1 Yanagido, C	Jifu 501-1193
	Fax:+81-25-293	-2427,E-mail:kuse@cive.gifu-u.ac.jp
Masata SUGITO :	Dept. of Civil I	Engineering, Gifu University
	Fax:+81-25-293	-2420,E-mail:sugito@cive.gifu-u.ac.jp
Nobuoto NOJIMA :	Dept. of Civil I	Engineering, Gifu University
	Fax:+81-25-293	-2416,E-mail:nojima@cive.gifu-u.ac.jp
Yoshinori FURUMOTO :	Dept. of Civil I	Engineering, Gifu University
	Fax:+81-25-293	-2441,E-mail:furumoto@cive.gifu-u.ac.jp

It is widely recognized that the delay in emergency response to Hyogoken-Nanbu Earthquake was mainly caused by the lack of effective information transmission in the early stage of the disaster. In this study, a comprehensive method is developed for rapid estimation of seismic intensity distribution in urban areas. The nonstationary strong motion prediction model, EMPR, is employed for simulation of strong ground motions at arbitrary sites surrounding the causative fault. Fault parameters, such as the seismic moment, rupture direction, rupture propagation velocity, etc. are identified on the basis of the JMA quick report of the seismic source and strong motion data recorded at numerous seismic observatories. For shortening the required time for data processing, an interpolation technique of the seismic intensity distribution is developed. Numerical examples are shown to demonstrate the efficiency of the proposed method.

1. 序論

1995年兵庫県南部地震においては,被害状況を国や 自治体が早期に把握できなかったことが,地震発生直後 の被害拡大防止,救援・復旧への初動体制の整備が遅れ たことの要因の一つとして挙げられる.地震発生直後 の被害状況を早期に把握し,迅速で適切な対応ができ れば,人的被害や火災などの二次災害を防止・軽減し, 早期復旧を目指すことができる.

地震直後の被害状況把握の有力な手がかりとなるの が,地震動強度分布に関する情報である.この地震発 生直後における主な分布推定法を表1にまとめる.最 も簡便な方法は,地震発生後10分程度で気象庁¹⁾より 発表される震源情報と距離減衰式²⁾を利用し,地震動 強度の概略を推定することである.ところがこの方法 では,断層の破壊過程を考慮できないため,震源域の 地震動強度を的確に算定できない. 一方,震源断層を想定した強震動シミュレーション³⁾ によれば,断層の広がりや破壊方向などを考慮した地 震動強度分布を推定することができる.しかし,シミ ュレーションによる地震動強度分布推定法には,(1)詳 細な震源パラメータが必要であること,(2)推定に膨大 な数値計算時間を必要とすること,といった問題点が ある.

ところで,兵庫県南部地震以降,科学技術庁は K-NET⁴⁾を設置し,全国に約25km間隔,約1000ヶ所に強 震計を設置した.さらに,電力,ガスなどの公益事業 体や自治体では,独自の強震動観測網や即時収集,解 析システムの整備が進められている⁵⁾.広域的な地震 動強度分布を把握するには観測密度がまだ不足してい るとはいえ,地震観測網で得られた観測記録は,震源パ ラメータの即時推定に有用な情報源として期待できる.

本研究では,地震発生後に広域的な地震動強度分布 を即時に推定する手法を検討する.地震発生直後に気

	Rapidness	High density	Precision	Parameters
Attenuation relation			×	Magnitude, Focus(Latitude, Longitude, Depth)
Simulation of earthquake motion	×			Magnitude, Fault length, Rupture direction, Seismic moment, Rupture velocity
Strong motion observation		×		Non

Table.1 The Comparison of Three Methods for Estimation of Seismic Intensity Distribution

象庁より発表される震源情報と強震動記録により,断 層長さや破壊方向などの震源パラメータを推定する. 推定された震源パラメータに基づき,少数地点でシミュ レーションした地震動強度を補間することで広域的な 地震動強度分布を即時推定する.

以下,2章では,震源情報と観測記録より震源パラ メータを即時に推定する手法を検討する.3章では,震 源パラメータに基づき,シミュレーションと補間による 地震動強度分布の即時推定法について述べる.4章で は,岐阜県八幡断層を震源とする想定地震に対して適 用した例を示す.5章では,兵庫県南部地震で観測され た強震記録からシミュレーションのための震源パラメー タを推定した例を示す.

2. 震源パラメータの推定

2.1 震源パラメータ推定の概要

本章では,地震発生後早期に得られる情報として, 気象庁発表の震源情報 (マグニチュード,震源の緯度・経 度,震源深さ)と観測記録から,地震動シミュレーショ ンに必要な震源パラメータ (図1に示す断層長さL,断 層の破壊方向 ϕ ,地震モーメント M_0 ,断層の破壊伝播 速度 v_r)を推定する方法について述べる.

全ての震源パラメータを同時に推定する場合,L, ϕ , M_0 , v_r のあらゆる組み合わせを考慮しなければならな いため,本研究では図2に示す2つのステップに分けて 推定を行う.

Step1:断層長さL, 断層の破壊方向 ϕ

Step2:地震モーメント M_0 , 断層の破壊伝播速度 v_r

なお,本研究で推定する震源パラメータは内陸直下 型の断層を対象とし,断層の傾斜角については,図1に 示すように断層面の傾き角 $\phi_x = 90^\circ$,断層面の食い違 い方向の傾き角 $\phi_y = 0^\circ$ と仮定する.

2.2 断層長さLおよび破壊方向 ϕ の推定 (Step1)

Step1 は,震源位置(緯度,経度,深さ)とマグニチ ュード M より断層長さ L,断層の破壊方向 ϕ を決定す るステップである. $L \ge \phi$ の推定にあたっては,二次元 探索の方法を用いることとした.つまり, $L \ge \phi$ の組み 合わせを総当たり的に試行することにより,地震動パ ワー $P_T(2.3$ で解説)の推定誤差が最小となるL, ϕ を決

Fig.1 Fault Parameters

Fig.2 Estimate Prossess of Fault Parameters

定する.

以下にその推定手順を示す .

(1) 気象庁発表のマグニチュードMより, 断層長さ L_0 を次式により仮定する $^{(6)}$.

$$\log L_0 = 0.6M - 2.9 \tag{1}$$

(2) 断層の破壊方向 ϕ を仮定し, L, ϕ より観測点の地

震動パワー *P*^{*m*} を算定する.

- (3) (2) で算定した P_T^m と観測記録より得られた地震動
 パワー P_T の誤差評価を行う.
- (4) L, ϕ の組み合わせを変えて (2),(3) を繰り返し, $L = L_0 \pm 50\%$, $\phi = 0 \sim 360^\circ$ の二次元探索によ り誤差が最小となるL, ϕ を決定する.

ここで,断層長さLと断層の破壊方向 ϕ から任意地 点の地震動パワーを算定するには,地震動シミュレー ションを実行する必要があるが,本研究では即時性を重 んじるため,断層長さLや破壊方向 ϕ と地震動パワー P_T の関係に着目し,地震動パワーの距離減衰特性に基 づくL, ϕ の推定を行う.2.3 にその方法を示す.

2.3 誤差評価のための地震動パワーのモデル化 地震動パワー *P*_T は,式(2)により定義される.

$$P_T = \int_0^T \{x(t)\}^2 dt$$
 (2)

ここに, P_T は地震動加速度パワー $(\text{cm}^2/\text{sec}^3)$,x(t)は加速度時刻歴 (cm/sec^2) ,tは時刻 (sec),Tは記録が観測された時間 (sec)である.

断層近傍のデータに基づく推定式がこれまでに得ら れていないことから,工学的基盤における非定常地震 動予測モデル EMPR³⁾により算定した地震動波形から 地震動パワーの距離減衰式のモデル化を行う.EMPR は,兵庫県南部地震を含む国内の強震記録を基に作成 された,非定常スペクトル合成法による地震動予測手 法である.

EMPR による強震動シミュレーションの例として,八 幡断層を震源とするM = 7.3を想定した場合の地震動 パワー P_T を図3に示す. P_T が最大となる地点()が 震源()から破壊伝播方向(矢印)の断層上にあり,そ こからほぼ同心円上に分布していることがわかる.

まず,モデル化に際し,図1に示す震源から地震動パ ワーが最大となる地点までの距離 *L_P* と断層長さ *L* の 関係を求めた.その結果を示した図4より,*L*と*L_P* の 関係を次式により表すことができる.

$$L_P = 0.81 \times L \tag{3}$$

ここに,Lは断層長さ(km), L_P は震源から地震動パ ワーの最大地点までの距離(km)である.

次に,地震動パワー P_T の距離減衰式をマグニチュードM,図1に示す P_T の最大地点(震源から距離 L_P の断層面上の地点)からの距離 $R_P(\text{km})$ でモデル化する. モデル化に使用したデータ数は2424点であり,変動係数は0.141である.得られた地震動パワーの推定式を式

Fig.3 Distribution of Acceleration Power

Fig.4 Relation between Fault Length L and the Maximum Point of Acceleration Power L_P

(4) に示す.

 $\log_{10} P_T = 0.846 \cdot M - 0.0049 \cdot R_P - 1.46 \log_{10} R_P + 0.895$ (4)

図 5 にシミュレーション結果と *P*_T の距離減衰式 (4) を示す.式 (4) がシミュレーション結果とよく一致して いることがわかる.

2.4 地震モーメント M_0 ,断層の破壊伝播速度 v_r の推定 (Step2)

本節では, Step2の地震モーメント M₀, 断層の破壊 伝播速度 v_rを推定する手順について述べる. 以下に推定手順を示す.

(1) 地震モーメントの初期値 M_{0_0} と断層の破壊伝播速度の初期値 v_{r_0} を設定する M_{0_0} は,マグニチュードMから,次式⁶⁾により設定する.

$$\log_{10} M_{0_0} = 17.0 + 1.3 \cdot M \tag{5}$$

ここに, M はマグニチュード, M_{0_0} は地震モーメン

Fig.5 Relation between Acceleration Total Power and Distance R_P

トの初期設定値 (dyne · cm) である.

- (2) Step1 で決定した L, φ と上記の M₀₀, v_{r0} より, 各 観測地点の地震動波形を算定する.
- (3) 観測点 i の地震動パワー P_{T_i} , 地震動継続時間 t_{90_i} と,(2)より得られた $P_{T_i}^e$, $t_{90_i}^e$ から誤差を評価する. このとき,地震モーメント M_0 は地震動パワー P_T , 断層の破壊伝播速度 v_r は地震動継続時間 t_{90} より 評価する.地震動継続時間 t_{90} は,図6に示すよう に地震動の累積パワーが 5% ~ 95% までの時間で 定義される.
- (4) P_T , t_{90} の誤差が大きな場合,地震モーメント M_0 , 断層の破壊伝播速度 v_r を補正し,誤差が5%以下, または次に述べる補正係数 α, β が 1 ± 0.05 以下にな るまで $(2)\sim(3)$ を繰り返す.

Step2 では, 地震動パワー P_T , 地震動継続時間 t_{90} から, M_0 , v_r を次式により補正する.

$$\left.\begin{array}{l}
M_0 = \frac{M_{0_0}}{\alpha} \\
v_r = \beta \cdot v_{r_0}
\end{array}\right\}$$
(6)

ここで, α,β はそれぞれ M_0 , v_r の補正係数で,式(7) より求める.

$$\alpha = \left(\frac{\sum_{i=1}^{n} \left(\frac{P_{T_i}^e}{P_{T_i}}\right)}{n}\right)^{1.222}$$

$$\beta = \frac{\sum_{i=1}^{n} \left(\frac{t_{90_i}^e}{t_{90_i}}\right)}{n}$$

$$(7)$$

ここで, n は観測地点数である.

Fig.6 Definition of Duration Time t_{90}

補正係数 β は,破壊伝播速度 v_r が速いと地震動継続時間 t_{90} は短くなり,反対に v_r が遅いと t_{90} が長くなる関係から,観測記録とシミュレーションでそれぞれ得られる t_{90} の比の平均値より定める.

地震モーメント M_0 の補正係数 α を求めるため,こ こでは $M_0 \ge P_T$ の関係を次式で表現する.

$$\frac{M_{0_0}}{M_0} = \left(\frac{P_{T_i}^e}{P_{T_i}}\right)^{\gamma} \tag{8}$$

右辺の γ を求めるため,大規模断層を表現するための 小規模断層 (M = 6)の重ね合わせ個数 (非整数)である N_G を用いる. N_G は次式で表される ³⁾.

$$N_G = 8.71 \times 10^{-11} \times M_0^{0.409} \tag{9}$$

一方, P_T は重ね合わせ数 N_G の2乗に比例することから,次式の関係が成り立つ.

$$P_T \propto N_G^2 \propto M_0^{0.808} \tag{10}$$

上式より, $\gamma = 1.222$ を得る.よって, M_0 の補正係数 α は,観測記録とシミュレーションそれぞれで得られた P_T の比の平均値より定める.

3. 震源パラメータに基づく地震動強度分布の即時推定

観測記録から震源パラメータが即時推定された結果 を用いて地震動強度分布を即時に推定する.地震動は 局所的な地盤条件の影響を大きく受けることが知られ ている.地盤条件の違いにより近接した地点で地震動 が大きく異なる場合があるため,地盤の影響が比較的 少ないとされる工学的基盤面を対象に地震動強度分布 を短時間に推定する方法について述べる.

強震動シミュレーションにより地震動強度分布を推 定するには膨大な数値計算時間を必要とするため,地 震動強度分布を即時に推定することは困難である.そ

Table.2 Estimation Error and Mesh Size

Estimation error (%)	Shortest distance of fault(km)						
	10	20	30	40	50	60	$70\sim$
10.0	16	16	16	16	16	16	16
5.0	8	8	16	16	16	16	16
4.0	8	8	16	16	16	16	16
3.0	4	8	8	16	16	16	16
2.0	4	4	8	8	16	16	16
1.0	2	4	4	4	8	8	16

こで少数地点で算定されたシミュレーション波形より得 られる地震動強度を形状補間関数⁷⁾を用いて補間する ことにより計算の効率化を図る.形状補間関数は,有 限要素法において離散点の間の値を補って連続関数と して扱うための技法であり,地震動強度の空間的補間 法としても利用されつつある⁸⁾.

形状補間関数による地震動強度の補間例として岐阜 県八幡断層を震源とする地震動強度分布の推定例⁹⁾を 示す.2km,4km,8km,16km,32kmメッシュで時刻歴 波形が算定された場合を想定し,形状補間関数を用い て1kmメッシュの地震動強度分布を推定する.シミュ レーション範囲は岐阜県とその周辺地域を対象とした 約180×180kmの31073地点(1kmメッシュ)である.

等間隔で地点選定した場合の推定誤差とシミュレーション点数を図7に示す.1kmメッシュ全ての地点でシ ミュレーションにより地震動強度を推定するには約26 時間必要とする(CPU:PentiumIII-500MHz).八幡断層 を震源とする地震動強度分布推定の場合,図7に示す 関係から計算効率と推定精度の両面を考慮すると,両 グラフの交点付近にある8km程度のメッシュサイズが 妥当であると思われる.このときの計算時間は約26分 である.

しかし,図8に示す等間隔に地点選定した場合の, 断層最短距離ごとの最大速度の推定誤差を見てみると, 断層最短距離がおおむね40km以内の範囲で大きな誤差 が見られる.

以上の考察結果を基に,断層近傍でメッシュサイズ を小さく,遠方で大きくすることで計算の効率化と推 定精度向上が実現可能なメッシュ形成方法を検討した. 本研究では,地震動が構造物へ与える影響と関連が深 いとされている最大速度の誤差評価結果を用いた.

図8より,断層最短距離に関係なく,どの地点でも推 定誤差が一定となるようにメッシュサイズを選択する. 表2に,推定誤差と断層最短距離ごとに選択したメッ シュサイズを示す.表2によりメッシュサイズを選択し た場合のシミュレーション点数と予想される推定誤差を 図9に示す.図9を基にメッシュサイズを選択し,得ら れたシミュレーション結果より地震動強度を補間する.

Fig.7 Relation between Estimation Error and Number of Simulation Points

Fig.8 Relation between Shortest Distance to Fault and Estimation Error

Fig.9 Relation between Number of Simulation Points and Estimation Error

4. 八幡断層における適用例

本章では,これまで検討してきた地震動強度分布の 即時推定法を想定地震に適用した例を示す.

岐阜県八幡断層を震源として,岐阜県内の K-NET

★focus(35.53° N, 136.51° E)

Fig.10: Fault Parameter of Hypothetical Hachiman Fault

Fig.11 Simulated Earthquake Motion at Engineering Foundation Level for Hachiman Fault

強震観測点で記録が得られた場合を想定し,震源パラ メータ及び地震動強度分布の推定を行う.図10に震源 パラメータを示す.

これまでに岐阜県内の K-NET 観測点で大きな加速 度記録が得られていないため,記録が得られた場合を 仮定して非定常地震動予測モデル EMPR により地震動 波形を算定した.なお,地震動波形算定の際,初期位 相を与える一様乱数列を観測地点ごとにランダムに与 え,さらに振幅に±30%の振幅調整をしたデータを用 いた.岐阜県に設置されている K-NET 観測点と工学的 基盤面での地震動波形を図11 に示す.

4.1 震源パラメータ推定結果

震源位置,すなわち断層の破壊開始点は気象庁発表 の震源情報より既知であると仮定して,工学的基盤に

Table.3 Estimated Fault Parameters

		Initial value	Estimated		
Magnitude		7.3			
Depth (km)		15.0			
Focus	Latitude	35.882			
Focus	Longitude	136.847			
End of	Latitude	36.649	35.598		
Rupture point	Longitude	137.016	137.008		
Fault lengt	h (km)	30.0	35.0		
Rupture directi	on (degree)	149.3	155.5		
Seismic moment	t (dyne cm)	2.85×10^{26}	2.96×10^{26}		
Rupture velocit	$_{\rm ey}~({\rm km/sec})$	2.50	2.55		

おける K-NET 観測点の地震動波形より , 震源パラメー タの推定を行った .

表3に震源パラメータ推定結果を示す.

Step1 の推定結果では,断層長さ 30.0km,断層の破 壊方向 149.4°が真値であるのに対し,それぞれ 35.0km, 155.5°となり,地震動パワーの距離減衰特性に基づく断 層長さ,破壊方向の推定法が有効であることが確認で きた.

Step2 では,地震モーメント 2.85 × 10²⁶ dyne·cm,断 層の破壊伝播速度 2.50 km/sec に対し,それぞれ 2.96 × 10²⁶ dyne·cm, 2.55 km/sec となった.なお,震源パラメー 夕推定に要した計算時間は約 10 分である.

4.2 地震動強度分布推定結果

震源パラメータ推定結果を基に地震動強度分布を推 定する.推定するメッシュサイズは1kmで,断層最短距 離ごとにシミュレーション地点を選択することで,推定 精度と計算時間の両面を考慮して地震動強度分布を即 時に推定する.図9の関係から,計算時間20分前後, 推定精度が1.0%程度となるシミュレーション地点を選 定した.このときのシミュレーション点数は約400点で ある.

図 12 に全ての地点を強震動シミュレーションにより 推定した最大速度分布,図13 に震源パラメータ推定結 果に基づく最大速度分布即時推定結果を示す.図12,13 共にメッシュサイズは1km メッシュである.図13 には 選定されたシミュレーション地点を点で示し,灰線は震 源断層の真値,白線は震源パラメータ推定結果である.

図 13 の最大速度分布は図 12 の分布形状とよく一致 しており,断層の破壊方向を考慮した地震動強度分布 を精度良く推定できることが確認できた.計算時間に ついては,震源パラメータ推定に約10分,地震動強度 分布推定に約20分の計30分で,これより地震発生後 早期に推定することが可能であると言えるだろう.

Fig.12 Distribution of Peak Velocity

Fig.13: Selected Points and Distribution of Peak Velocity

5. 兵庫県南部地震における適用例

本章では,1995年兵庫県南部地震の観測記録による 推定例を示す.使用する強震記録は,基盤で観測された データ,または地盤データが既知である地点で観測され た堆積地盤上の記録から,地盤応答解析法 FDEL¹⁰⁾に より算定した基盤地震動であり,図14に示す5地点で の水平2成分のデータを使用した.

断層の破壊方向を変化させた場合の誤差分布を図15 に示す.破壊方向であるN60°~65°E付近の誤差が小さ くなっていることがわかる.しかし,観測地点が震源の 東側に集中し西側に少ないため,観測地点の多い方の 影響を受けたこともその理由として考えられる.

表4に震源パラメータ推定結果を示す.表中の兵庫 県南部地震の断層長さは,断層から北東方向の長さで ある.

即時推定された最大速度分布推定結果を図 14 に示

Fig.14 Location of Strong Motion Observation Station and Distribution of Peak Velocity Based on Ground Motion Simulation

Fig.15 Variation of Error for Rupture Direction

Table.4 Estimated of Fault Parameter (Hyogoken-Nanbu Earthquake)

		Hyogoken- Nanbu Earthquake	Estimated		
Magnit	ude	7.2			
Depth (km)	14.3			
Focus	Latitude	34.58			
Focus	Longitude	134.97			
End of	Latitude	34.73	34.71		
Rupture point	Longitude	135.20	135.27		
Fault lengt	h (km)	26.85^{*}	31.0		
Rupture directi	on (degree)	51.5	62.0		
Seismic moment	t (dyne \cdot cm)	$2.50 imes 10^{26}$	7.72×10^{26}		
Rupture velocit	y (km/sec)		1.92		

す.シミュレーション範囲は約255km×240km,地点数 は約1km メッシュで57825地点である.1km メッシュ全 ての地点を強震動シミュレーションにより推定するには 約48時間必要であるが,地点選定することで約30分 程度の計算時間で地震動強度分布を得ることができた.

6. 結論

本研究では,地震発生直後の震源情報と強震記録を 基に震源パラメータを推定し,推定結果に基づき工学 的基盤レベルでの地震動強度分布を即時推定する手法 について検討した.以下に結果を要約する.

- (1) 震源情報と観測記録を用いた 2 段階の震源パラ メータ推定法を検討した.
- Step1: 観測記録から算定された工学的基盤における地 震動波形と地震動パワーの距離減衰式より,断層 長さ,断層の破壊方向を推定する.
- Step2: 強震動シミュレーションと地震動パワー及び地震 動継続時間による地震モーメント,断層の破壊伝 播速度を推定する.
- (2) 著者らによる強震動シミュレーション法 (EMPR) を 用いて断層位置と地震動パワーの空間分布の関係 について考察を行い,地震動加速度パワーの距離 減衰式をモデル化した.
- (3) 工学的基盤における地震動強度分布の即時推定法 について検討した. ここでは,地震動強度の補間推定について考察し, 推定精度を保ちつつ推定に要する時間の短縮に関 して方法論を示した.メッシュサイズの違いによる 推定精度を評価した結果を基にシミュレーション地 点を選定することで推定精度向上,計算時間の短 縮を図った.その結果20分程度の短い計算時間で 全地点をシミュレーションにより算定した結果(計 算時間:約26時間)と同等の地震動強度を推定する ことが可能となった.
- (4) 想定八幡断層を震源とした M = 7.3 の地震に対し て震源パラメータ推定法を適用し,推定結果の考 察を行った.その結果,精度良く震源パラメータを 推定できることが確認できた.この場合,震源パラ メータ推定から地震動強度分布推定までの数値計 算に要する時間が約30分程度であった.地震発生 直後に,しかるべき数の強震動記録が得られれば, 断層の破壊方向を考慮した地震動強度分布を即時 に推定できることが可能であると言える.
- (5) 兵庫県南部地震で観測された記録を用いて震源パ ラメータ推定法を適用した結果,少数地点の観測 記録より短時間で推定することができた.

今後の課題について以下に述べる.

(1) 震源パラメータ推定では,断層の角度を $\phi_x = 90^\circ$, $\phi_y = 0^\circ$,地震モーメントの解放量を一定とし,断 層の破壊方向は破壊開始点から終了点まで一方向 に破壊すると仮定している.今後は断層の面的な 広がりや断層の角度,地震モーメントの解放量の 推定を行い,より詳細な震源パラメータ推定が可 能な手法を目指す.

- (2) 地震動強度分布の即時推定では、断層最短距離ご との推定精度を最大速度だけで評価している、今 後は最大加速度、計測震度などの誤差評価結果を 加えたシミュレーション地点の選定方法を検討したい。
- (3) 兵庫県南部地震に対する適用例では、少数地点の 観測記録より短時間で震源パラメータを推定でき たが、推定結果が観測点位置の影響を受けている ことも考えられるため、断層周辺に広範囲にわた る地点の強震記録を用いた推定を行う必要がある だろう。

参考文献

- (財)日本気象協会,防災気象情報サービスホームページ,http://tenki.or.jp/
- Fukusima,Y. and Tanaka,T., A new Attenuation Relation for Peak Horizontal Acceleration of Strong Earthquake Ground Motion in Japan, Bulletin of the Seismological Sosiety of America, Vol.80, (1990), pp.757~783.
- Sugito, M., Furumoto, Y. and Sugiyama, T., Strong Motion Prediction on Rock Surface by Superposed Evolutionary Spectra, 12th World Conference on Earthquake Engineering, (2000),2111/4/A, CD-ROM
- 4) 科学技術庁ホームページ, K-NET, http://www.k-net.bosai.go.jp/
- 5) 翠川三郎・阿部進, 横浜市におけるリアルタイム細 密震度分布推定, 第3回都市直下地震災害総合シン ポジウム, (1998), pp.393~396.
- 6) 松田時彦,活断層から発生する地震の規模と周期について、地震2,Vol.28,(1975), pp.269~283.
- 7) O.C. ツィエンキーヴィッツ 著,吉識雅夫・山田嘉昭 共訳,マトリクス有限要素法,(1984), pp.144~158., 培風館.
- 8) 高田至郎・高谷富也・小川安雄・福井真二,モニタリングシステムにおける地震動補間法と精度の検証,構造工学論文集,Vol.40A,(1994),pp.1151~1160.
- 9) 久世益充・杉戸真太・能島暢呂, 強震動シミュレーションによる基盤地震動の補間推定精度に関する一考察, 第18回日本自然災害学会学術講演会, (1999), pp.45~46.
- 10) 杉戸真太・合田尚義・増田民夫,周波数特性を考慮した等価線形化手法に関する検討,第29回土質工学会研究発表会講演集,(1993),pp.1129~1132.