円錐上の最短経路を題材にした教材の開発と実践

原田和樹1,愛木豊彦1

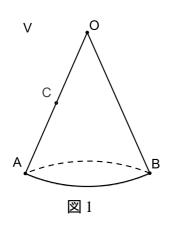
生徒が数学を身近に感じ、数学を好きになるためには、自ら数学的なきまりなどを発見 する活動を通して,その楽しさを実感することが重要であると考えた。そこで,本論文 では,円錐上の2点間の最短経路について展開図をもとに考えるという中学1年生用の 教材を開発した。この授業では,円錐を組み立てる活動の中で,きまりを発見すること に重点をおいている。

<キーワード>円錐,展開図,最短距離,三平方の定理,接線

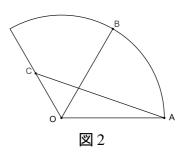
1. はじめに

次の問題Iは、展開図を利用して解く問題 としてよく知られている。

問題I「図1のような円錐Vを考える。図 1 において AB は底面の直径であり, C は母 線 OA の中点である。ここで,円錐の表面を 通って, A から C へ行く経路で,線分 OB と 必ず交わるもののうち、その経路の道のりが 最短となるものの長さを求めよ」



この問題を解くには,図2のように円錐の 展開図をかき、この図上での AC の長さを求 めればよい。さらに∠AOC が特別な角度であ れば,三平方の定理を用いてACの長さを求 き,上の方が高いと考えることにする。そし めることができる。



このように,問題 Iは,三平方の定理の活 用として取り上げられることが多い。

ここで,円錐を底面を下にして置き,上の 方が高いと考えることにする。このとき,円 錐の側面の展開図である扇形の中心角の大き さによって,最短経路が目的地よりも高いと ころを通る場合と通らない場合とがある。こ れは,2節で詳しく述べるように,中学生の 既習内容をもとに十分考察でき、しかも、中 学生にとっても興味深い内容であると判断し た。したがって,SPP事業として開催される 授業を実践するに際し、これを題材にした授 業案を開発することにした。

2.授業の概要

2.1. 題材について

前節で示したように,円錐の底面を下に置 て,Aを出発して最短経路を通ってCに行く

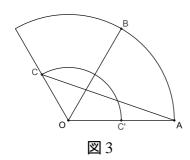
¹岐阜大学教育学部

ものとする。

このとき, A から C に行くまでに上り続けるかどうかということと, 図 2 における $\angle AOC$ の大きさの関係について考える。

まず,中心O,半径OCの弧を図2の扇形にかき,OAとの交点をC'とする。

AC が扇形の弧 CC' に点 C で接するときを 考える。



性質 1

直線 AC が弧 CC' に点 C で接するとき,つまり, ∠ACO=90°のとき, ∠AOC=60°となる。また, ∠AOC=60°ならば, ∠ACO=90°である。(証明) C は円錐 V の母線の中点なので

$$CO : OA = 1 : 2.$$

よって , \angle OCA= 90° なので , 三平方の定理より

CO : OA : AC = 1 : 2 :
$$\sqrt{3}$$
.

よって、 $\angle AOC=60^{\circ}$ である。

また,∠AOC=60°のとき,同様にして ∠ACO=90°となる。 (証明終)

補題1

三角形 AOC において , \angle AOC \leq 60° かつ , OC : OA = 1 : 2 のとき , \angle OCA \geq 90°

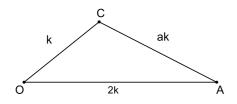


図 4

(証明) OC: OA: CA = 1:2:a とする。 ここで, OCの長さをkとおくと, CA = 2k, CA=akとなる。

余弦定理より,

$$\cos \mathbf{O} = \frac{k^2 + (2k)^2 - (ak)^2}{2 \cdot k \cdot 2k}$$
$$= \frac{5 - a^2}{4}.$$

$$\frac{1}{2} \le \cos O < 1,$$

$$\frac{1}{2} \le \frac{5 - a^2}{4} < 1,$$

$$2 \le 5 - a^2 < 4,$$

$$-3 \le -a^2 < -1,$$

$$1 < a^2 \le 3,$$

a > 0 より

$$1 < a < \sqrt{3}. \tag{1}$$

もう一度余弦定理を用いて,

$$\cos \mathbf{C} = \frac{(ak)^2 + k^2 - (2k)^2}{2 \cdot k \cdot ak}$$
$$= \frac{a^2 - 3}{2a}.$$

a > 0 と (1) より,

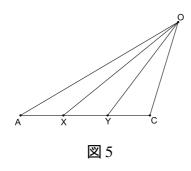
$$\cos \mathbf{O} < 0$$

なので, ∠ACO>90° が成り立つ。(証明終)

定理 1

 \angle AOC \leq 60° のとき , 問題 I での最短経路を通って A から C に進むとき常に上り続ける。

(証明)補題 1 より, \angle AOC \le 60° のときは, 三角形 AOC は \angle OCA \ge 90° の鈍角三角形となる。このとき三角形 AOC の辺 AC上に, 2 点 X, Y をとり, A に近い方を X とする。このとき, XO > YO となることを示せば,この定理が成り立つことがわかる。(図 5)



これを以下の3通りの方法で証明する。

(証明1)

$$\angle XYO = \angle COY + \angle OCA$$

より,

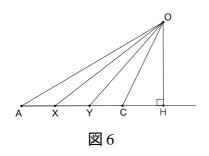
$$\angle XYO \ge 90^{\circ}$$
.

よって,三角形 XYO において,∠XYO が 最も大きい角である。三角形において最大角 には最大辺が対応するので,

$$XO > YO$$
.

(証明終)

(証明2)



AC を C 側に延長し , O から垂線を下ろし , その垂線の足を H とする。

三平方の定理より,

$$OY^{2} = (YC + CH)^{2} + OH^{2},$$

$$OX^{2} = (XC + CH)^{2} + OH^{2}.$$

YC < XCより

XO > YO.

(証明終)

(証明3)

$$\angle OCY = \theta$$
 とおくと,余弦定理より,

$$OY^2 = OC^2 + YC^2 - 2OC \cdot YC \cdot \cos \theta,$$

$$OX^2 = OC^2 + XC^2 - 2OC \cdot XC \cdot \cos \theta.$$

 $\cos\theta < 0$ なので,

$$-2$$
OC · YC · $\cos \theta > 0$,

$$-2$$
OC · XC · $\cos \theta > 0$,

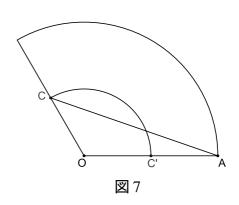
これと, YC < XCより,

$$XO > YO$$
.

(証明終)

補題 2

60° < ∠COA < 180° のとき , 線分AC と , 弧 CC' は点 C とは異なる交点をもつ。



(証明)三角形 AOC において,線分 CA上に OC=CD となる点 D がとれることを示せばこの定理が成り立つことがわかる。

中心 O , 半径 OC の円 O_1 と直線 CA の交点 について考えると , 交点の数は 1 つ , または 2 つである。

交点の数が1つのとき,直線CAは円の接線となるので,

$$\angle ACO = 90^{\circ}$$
.

よって,性質1より,

$$\angle AOC = 60^{\circ}$$
.

これは,仮定に矛盾する。

よって,円 O_1 と直線CAは点C以外の交点Dをもつ。

この点 D が線分 CA 上にないと仮定する。

(i) 点 D が C 側の半直線上にあるとき

三角形 OCD は二等辺三角形なので, O から CD におろした垂線の足を H とすると, H は線分 CD 上にある。

∠OHC = 90° より,

$$\angle OCA = \angle OHC + \angle HOC$$

= $90^{\circ} + \angle HOC$
> 90°

三角形 AOC において,余弦定理を用いて,

$$OA^2 = AC^2 + CO^2 - 2AO \cdot CO \cdot \cos C$$
.

 \angle OCA > 90° より, \cos C ≤ 0 なので,

$$OA^2 \ge AC^2 + CO^2. \tag{2}$$

ここで, ACの長さの範囲を求める。 OC = 1, AC=a とすると, OA=2 である。 三角形 COA において, 余弦定理を用いて,

$$\cos \mathbf{O} = \frac{2^2 + 1^2 - a^2}{2 \cdot 1 \cdot 2}$$
$$= \frac{5 - a^2}{4},$$

 60° < $\angle COA$ < 180° より,

$$-1 < \cos O < \frac{1}{2},$$

$$-1 < \frac{5 - a^2}{4} < \frac{1}{2},$$

$$3 < a^2 < 9,$$

a > 0 より

$$\sqrt{3} < a < 3. \tag{3}$$

(2), OC=1,(3)より,

$$OA^2 > (\sqrt{3})^2 + 1^2$$

= 4.

OA > 0 より

$$OA > 2$$
.

OC=1 のとき,OA=2 なので矛盾する。 したがって,この場合は起こりえない。

(ii) 点 D が A 側の半直線上にあるとき

(イ) ∠OAC < 90° のとき

∠OAD > 90° なので, 三角形 OAD において, ∠OAD が最大の角である。三角形において最大角には最大辺が対応するので,

$$OA < OD = OC$$
.

これは, OA: OC = 2:1 に矛盾する。

(ロ)∠OAC > 90° のとき

三角形 OAC において, ∠OAC が最大の角である。三角形において最大角には最大辺が対応するので,

$$OA < OC$$
.

これはOA:OC = 2:1 に矛盾する。

(八) ∠OAC = 90° のとき

直角三角形 OAD において,辺 OD は斜辺なので,

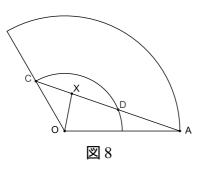
$$OA < OD = OC$$
.

これも, OA: OC = 2:1 に矛盾する。 したがって, (i), (ii)より点Dは線分AC上 に存在する。 (証明終)

定理 2

目的地より高いところを通る。

(証明)60° < ∠AOC < 180°のときの最短 経路は,補題2より,図8のようにOCを半径 とする扇形の弧と点 C 以外の点 D と交わる。 は図 6 の扇形の弧を 2 等分する点である。

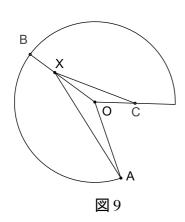


このとき、線分CD上の任意の点をXとす ると, 点C, Dは円の円周上の点, 点Xは円 の内部の点なので,

となるため,最短経路は目的地より高いとこ ろを通る。 (証明終)

定理3

∠ AOC > 180° のとき, 最短経路は線分 OC と線分 OA を合わせた折れ線である。



(証明)

条件で示された経路は,円錐の表面を通り,か そして,本教材のねらいを以下のようにし

つ , 線分 OB と交わらなければならない。こ こで, X を経路と OB との交点とすると, X 60° < ∠ AOC < 180°のとき,最短経路は を通る経路の中で最短の経路は線分AXと線 分 XC を合わせた折れ線である。

> 従って , AO+OC < AX+XC を示せばよい。 今,ABは円錐の底面の直径なので,点B よって,

$$\angle AOB > 90^{\circ} \angle COB > 90^{\circ}$$
.

三角形 AOB において,最大角には最大辺 が対応するので、

$$AO < AX$$
.

三角形 COX においても同様に ,

$$OC < XC$$
.

ゆえに,

$$AO+OC < AX+XC$$
.

(証明終)

このように , ∠ AOC の大きさによって最短 経路が登り続けたり、そうでなかったりする ことがわかる。

2.2. 授業のねらい

今回の実践では,山の形を円錐とみて考察 していくことにした, また, 対象学年が中学 1年生であるため,円錐の最短経路に対して 以下の考察ができると考える。

- ・展開図上で,スタートと目的地を直線で結 んだものが,最短経路であることがわかる。
- ・扇形の中心角が , 120° の円錐を実際に配布 し,ひもをかけることで最短経路が目的地よ りも高いところを通ることに気付く。
- ・扇形の中心角が異なる円錐をいくつか作る ことで,最短経路が「登って下りる」「登り 続ける」、「頂点まで登る」といった場合があ ることに気付く。

た。

- (a) どのようなときに最短距離になるのかを, 展開図や立体での考察を通して理解すること ができる。
- (b) さまざまな円錐を作ることで, 最短の道路 の特徴を見つけ出すことができる。
- 数学への興味関心を高めることができる。

本授業で最も重要なのは、円錐を作り、きいう課題を設定する。 まりを発見するという数学的活動を通して, 数学の楽しさを実感することである。

2.3. 授業の流れ

授業の詳しい計画は,指導案(文末資料1) で示したので、ここでは簡単に説明する。

1.第1時

(1) 問題提示・課題設定

まず,山の写真を見せ「山に観光用の道路 をつくる。景色を360 9見ることができて,で きるだけ環境を壊さずつくるにはどうしたら よいだろうか。」という問題を提示する。ここ で「景色を360 。見ることができる」を「山の 周りを一周する」「環境を壊さない」を「でき るだけ短い距離」ととらえることを確認する。

そして,山を円錐とみて考えていくことと し「目的地までの距離ができるだけ短い道路 をつくろう。」という課題を設定する。

(2) 個人追究

- ペンで円錐に道をかくなどして,最短 経路がどのようなものかを予想をする。
- 円錐の表面上にひもをかけ,最短経路が どのようなものかを考える。
- 円錐の展開図上での最短経路について 考える。

(3) 全体交流・まとめ

最短距離の見つけ方を交流する。

最後に「展開図上で2点を直線で結んだ線 がに最短経路になる。」とまとめる。

2.第2時

(1) 課題設定

前時の円錐での最短距離の道は目的地より 上に登っていることを確認する。円錐の中心 (c) 自らいろいろなきまりを発見することで、角を変えると最短距離の道はどうなるのだろ うかと投げかけ「展開図の中心の角度を変え たときの最短の道路について調べよう。」と

(2) 個人追究

立体や展開図,もしくはその両方をもとに して中心角が変わったときの最短距離の道の 性質について調べる。各班毎に協力してさま ざまな角度の円錐を作り、それらを比べなが ら調べる。

(3) 全体交流

個人追究したことを全体で交流する。円錐 の形と最短距離の関係について見つけたこと を全体で交流し理解を深める。(4) まとめ

3. 実践結果

講座名:「マウンテンドーロ」

場所:岐阜県白川町立白川中学校 実施日:平成22年9月16日(木)

第3.4校時

対象:中学1年生(47名)

3.1. 活動の様子

1.第1時

「目的地までの距離ができるだけ短い道路 をつくろう。」という課題設定後,4~5人の 班に分かれて個人追究を行った。各班には岐阜 大学数学科の学生が1人ずつついている。生 徒は写真1のようにペンで予想を立てていた。

写真1

その後,写真2のように円錐にひもを巻き つけることで「もっと上に登ったほうが短く なる」ととつぶやく生徒もいた。

写真2

そして,写真3のように円錐の側面を展開 することで「予想の線がたるんでいる。ぴん と張ればいい」といった声が上がり、最短距 離を見つけていた。

写真3

道路は目的地よりも登って下りている。」とい う思いましたか? う意見を,全員が納得していた。そこで,山の 形が変わっても最短の道路はいつでも「登っ・実際に作ってみると,いろんなことが分

て下りる」のかという疑問を提示し,第2時 へとつなげた。

2.第2時

「展開図の中心の角度を変えたときの最短 の道路について調べよう。」という課題設定 後,第1時と同じように班に分かれて追究を 行った。班内で協力し写真4のようにさまざ まな円錐を作っていた。

写真4

その中で,展開図の中心の角度で場合分け して「登り続ける」ときや「頂点まで登らな くてはならない」(写真5)といった特徴を見 つけて,全体交流で発表していた。

写真5

授業後にアンケートを実施した。その回答 の一部を紹介する。

- (1)円すいで最短になる道路の見つけ方 は理解できましたか?
 - ・理解できた ...46 人
 - ・やや理解できなかった ...1人
- (2) さまざまな円錐を作って,最短距離 全体交流で出された「この円錐だと最短の になる道路の特徴を見つける活動についてど
 - ・面白かった。

かった。

- たりしてわかりやすくできた。
- にはどうすればよいですか?
- ・展開図にしてスタートと目的地を直線 で結ぶ。
 - (4)授業の感想を自由に書いてください。
 - ・楽しく考えながら答えをみつけられた。
- ・実際に物を使ってやることができたので 楽しかった。
- ・ふだんあまり考えない事を考えられたの で楽しかった。
 - ・難しかった。
 - ・数学の楽しさが分かった。

本授業のねらい(a)(b)(c)の達成度について 考察する。

(a)「どのようなときに最短距離になるのか を,展開図や立体での考察を通して理解する ことができる。」について

個人追究のときに,全員が最短距離になる 道を理解し「登って下りている」等の考察が できていた。また,アンケートの質問(1)で受 講生徒 47 人中 46 人が「理解できた」と回答 し,質問(3)では「展開図にしてスタートと目 的地を直線で結ぶ。」と回答していた。このこ とから,このねらいは達成できたと考える。

(b)「さまざまな円錐を作ることで,最短の 道路の特徴を見つけ出すことができる。」に ついて

第2時の個人追究で,班内で協力しどの班 も「登り続ける」ときや「頂点まで登らなけ れまならない」ときがあることを展開図の扇 [1] 文部科学省,2008,中学校学習指導要領解 形の角度で場合分けして特徴を考えられてい 説数学編,教育出版株式会社. た。また,アンケートの質問(2)で「実際に

作ってみると, いろんなことがわかった」や ・円すいをたくさん作ってそれぞれを比べ 「円すいをたくさん作ってそれぞれを比べた りしてわかりやすくできた」といった回答が (3)立体上で最短になる道路を見つける あったことから,このねらいも達成できたと 考える。

> (c)「自らいろいろなきまりを発見するこ とで、数学への興味関心を高めることができ る。」について

> アンケートの質問(4)で「実際に物を使って やることができたので楽しかった。」や「ふ だんあまり考えない事を考えられたので楽し かった。」といった回答があった。また、どの 生徒も最短経路についてのきまりを発見でき ていた。このことから、このねらいも達成で きたと考える。

5. 今後の課題

今後の課題は,本教材の見直しである。問 題設定に少し無理があり生徒がすぐには理解 しがたかった。さらに本教材についての教材 研究をし、わかりやすい問題設定にしたい。対 象が中学2,3年生の場合では,より深い考 察もできるためほかの授業展開も考えていき たい。また,授業中の時間配分がうまくいか ず,生徒たちも円錐を作ることに夢中になっ て学習プリントに気づきや考えを記入する時 間が十分に取れなかった。この点についても 改善していきたい。

今回の教材開発をもとに,他領域の教材開 発もしていきたいと考えている。また,算数・ 数学が楽しいを思える児童・生徒が増えるよ うな教材開発を行っていきたい。

引用文献

文末資料1(第1時)

過程	ねらい	学習活動	指導援助
導入	○問題場而を把 握し、よりよい道 順を予想するこ とができる。	1.スライドを見て問題場面を把握する 問題山に観光用の道路をつくる。景色を360°見ることが できて、できるだけ環境を裹さずつくるにはどうしたらよ いだろうか。	・スライドを映す。 ・問題、課題の紙を貼る。
展開	○立体上や展開 図上での操作を 繰り返すことで、 最短距離を見つ けることができ る。	課題目的地までの距離ができるだけ短い道路をつくろう。 2 個人追究をする ①ベンで道を円錐にかき、予想を立てる ②ひもを予想した線に巻きつけ固定して考える できるだけまっすぐにしよう ひもを引っ張れば距離が短くなるぞ 上の方を通った方が距離は短くなりそうだ このままでは考えにくいなぁ	・ケント紙の円錐、ワークシートを配布する。 ・各班長が道具(テープ、たこ糸)を配る。 ・どんな時に距離が短くなりそうかを問う。 ・生徒にその道順を考えた理由をワークシート に書かせる。
		③立体で考えた道順が、展開図上ではどうなっているのかを考える	・立体からのみで考えている生徒には、「円錐のままだと考えにくくない?」などと問い、展開できるようにする。 ・なぜそのときに距離が短くなるのかを問う ・ケント紙の三角錐を切ることで、展開図を考える。
	○最短距離にな る理由を考え、交 流することで、そ の理由が分かる。	ひもにゆるみがあるぞ (これは最短ではなさそうだ) 二点をまっすぐに結んだ時が最短距離になりそうだ。 ①展開図で考えた道順が、立体上ではどうなっているか考える	・展開図をテープで貼り、立体に戻す。 ・展開図上で、2点を直線で結んだ生徒に対し ては、「道はどんなふうになっているのか」と 問い、立体に戻すように促す。
	○最短距離の作 図の仕方がわか る。	最短距離のときは目的地より上に登らなければならない 上の方が円の半径が短くなるから、距離も短くなる 3 全体交流をする ・全体でどのように巻きつけたのかと、なぜそのときが最短距離になるのかを交流する。	
まとめ		4まとめ 展開図上で二点を直線で結んだ時に最短距離になる	・どんな形の円錐でも、同じように目的地より 上に登って下りるルートになるのかを問い、次 の時間へつなげる。

文末資料2(第2時)

○問題場面を把 1問題場面を把握する ・色違いの形が違う円錐を用意し、展開して見 課 ・前時の円錐での最短距離は目的地より上に登って下っている せて、扇形の中心角の大きさが違うことを確認 握し、予想を立て 題 ことを確認する。 ることができる。 する. 二種類の円錐を提示する 円錐の形が変わるとどうなるのだろうかと疑 間を持たせる。 中心角を変えれば形が違う円錐ができることを理解する。 円錐の形が変わると最短距離はどうなるのかと問い課題に つなげる. ワークシートを配る。 ○立体上や、展開 ・ケント紙とコピー紙に円をかいた紙を用意す 課題展開図の中心の角度を変えたときの最短の道路につい 展 図上での操作を て調べよう。 5. 開 ・各班長が分度器を配る。 繰り返し、円錐の ・調べた跡を残し、発表で提示できるようにす 形と最短距離の 2個人追究をする 様々な関係を見 立体をもとにして 展開図をもとにして ・立体と展開図の両方で調べられるようにす つけることがで ・180°以上だとひもがかか ・円錐を作らなくても展開図 だけで考えられる きる。 調べられず、手が止まっている生徒に対して ・円錐が細いほど、登る角度、 ・目的地の線より内側に入る は「前時でどのように最短距離を調べたのか」 下りる角度が小さい と登って下りる。 を問い調べる手段を与える。 ·360° だと山にならない ・目的地より高い部分の長さ ・真裏を見たとき中心角小さ の真ん中の地点が一番高い ・気付いたことをワークシートに書かせる。 いほど傾きが大きくなる 両方をもとにして 中心角が小さければ登り続けるときがある。 ・60°以下だと登り続けそう ・180°以上は頂上を通ってから戻るルートになる ・180°以上は最短距離が変わらない ・180°以下だと中心角が小さいほど最短距離は短い 調べたときに作った立体や展開図をもとに 3全体交流をする ・自分が見つけた、円錐の形と最短距離の関係を全体で交流し し、提示しながら発表させる。 〇全体交流と飛 理解を深める 行機の航路の話 から、日常の中に ま 4まとめをする ある数学を実感 7 することができ ・飛行機の航路の話を聞き、生活の中に活かされていることを 85 実感する 3. 5アンケートを記入する