ロビクルをつくる 07

マガジンの内容

ロビのロボット見習い

人間型ロボットハンドの技術が生かされた「筋電義手」
機能はもちろん、人肌に近い仕上がりで、筋肉の信号で動かせる筋電義手の開発が進められている。

未来をもピンチで見る
究極のエコカー 燃料電池車
水素を燃料とし、排出物は水という未来の自動車が燃料電池車だ。

リチウムイオン電池
高いエネルギー密度でスマートフォンや電気自動車に使われるリチウムイオン電池。

ロボット・チャンネル
「Puzzlebox Orbit」を
最高性能なヘッドセットを装着し、駆動を使ってヘリコプターを操作する。

トイ・ロボットの世界
RADICON ROBOT（ラジコン・ロボット）
当時ではめずらしい、ラジコンで操るロボットだ。

今号のパーツと作業

パーツを確認しよう

製造した、これらのパーツに不足がないか確認しよう。

後輪を組み立てる

- 外輪ホイール ×2
- 内輪ホイール ×2
- ホイールクラウン ×2
- ダイヤ ×2
- ベネジ(M2x8mm中ねじ) ×7

ロビクル”

- 全長 / 31cm
- 全幅 / 21cm
- 高さ / 15cm

週刊ロビ『ロビクルをつくる』
ロビックルをくる
CONTENTS

ロビックルのロボット見聞録
01-03
人間型ロボットハンドの技術が生かされた「筋電義手」
機能はもちろんです。人には同じようにで、筋肉の信頼で動かせる筋電義手の開発が進められている。

近未来モーリディを採る
04-05
究極のエネルギー・燃料電池
水素を燃焼と水ができる未来の自動車が燃料電池カー。

風呂でわかる家庭の科学
06-07
リチウムイオン電池
高いエネルギー密度でスマートフォンや種電気車に使われるリチウムイオン電池。

ロボット・ちゃんねる
08
「Puzzlebox Orbit」ほか
高齢者向け高齢者向けのヘルプを脇に誘導のロボット。

トイ・ロボットの世界
09
RADICON ROBOT（ラジコン・ロボット）
当社ではお買い得なラジコンロボットを扱っています。

後悔を組み立ててる
10-12
ホールパーツを組み合わせ、タイヤを取り付けて後悔を組み立てる。

週刊ロビックル「ロビックルをくる」第7号

飛鳥（著） 01446880
（著） 日本ロボティクス・エンジニアリング
7-10-2222 増崎町中野1-1-1 ロボティクスプラザ2
（編） 人間工学研究所
（編） ロボット学会


人間型ロボットハンドの技術が生かされた「筋電義手」

长年にわたって人の手とはほぼ同じサイズのロボットハンドを研究開発してきた東京大学では、現在、筋肉の信頼で動かせる筋肉側面の開発が進められている。

外見や力といった機能はもちろん、人の肌に近い自然な仕上がりも求められ、非常にチャレンジングな研究だ。

既に小ロボットのモーターを内蔵し、モーターを組むときの大ま

ロビックルロビックルをくる
01-03
人間型ロボットハンドの技術が生かされた「筋電義手」
機能はもちろんですが。人には同じようにで、筋肉の信頼で動かせる筋電義手の開発が進められている。

近未来モーリディを採る
04-05
究極のエネルギー・燃料電池
水素を燃焼と水ができる未来の自動車が燃料電池カー。

風呂でわかる家庭の科学
06-07
リチウムイオン電池
高いエネルギー密度でスマートフォンや種電気車に使われるリチウムイオン電池。

ロボット・ちゃんねる
08
「Puzzlebox Orbit」ほか
高齢者向け高齢者向けのヘルプを脇に誘導のロボット。

トイ・ロボットの世界
09
RADICON ROBOT（ラジコン・ロボット）
当社ではお買い得なラジコンロボットを扱っています。

後悔を組み立ててる
10-12
ホールパーツを組み合わせ、タイヤを取り付けて後悔を組み立てる。

週刊ロビックル「ロビックルをくる」第7号

飛鳥（著） 01446880
（著） 日本ロボティクス・エンジニアリング
7-10-2222 増崎町中野1-1-1 ロボティクスプラザ2
（編） 人間工学研究所
（編） ロボット学会


人間型ロボットハンドの技術が生かされた「筋電義手」

长年にわたって人の手とはほぼ同じサイズのロボットハンドを研究開発してきた東京大学では、現在、筋肉の信頼で動かせる筋肉側面の開発が進められている。

外見や力といった機能はもちろん、人の肌に近い自然な仕上がりも求められ、非常にチャレンジングな研究だ。

既に小ロボットのモーターを内蔵し、モーターを組むときの大ま

人間型ロボットハンドの技術が生かされた「筋電義手」

長年にわたって人の手とはほぼ同じサイズのロボットハンドを研究開発してきた東京大学では、現在、筋肉の信頼で動かせる筋肉側面の開発が進められている。

外見や力といった機能はもちろん、人の肌に近い自然な仕上がりも求められ、非常にチャレンジングな研究だ。

既に小ロボットのモーターを内蔵し、モーターを組むときの大ま
本物の手のような見た目とものが持てる実用性を満たす筋電義手

力が要求される腕立て伏せの体勢に不都合があるが、筋電義手では、各関節をトルクリングでつながっており、1つのモーターで3つ以上の関節を駆動させている。筋電義手は内蔵プロックロッドを使い、確実な動作を可能にした。また、コントロールブレインを用いた制御技術を用いる。手の位置を検出した場合、筋電義手はこれをモーターで復原させるために動作する。手の位置を検出した場合、筋電義手はこれをモーターで復原させるために動作する。

さらに、合計80個の角度があるで、直角に寄せることができる。これだけの角度を持つロッドを取り入れることにより、筋電義手は高さを変えることも可能である。

筋肉の活動を模倣するシステム

筋肉の活動を模倣するシステムは、人間の筋肉活動を模倣する。筋肉の活動を模倣するシステムは、人間の筋肉活動を模倣する。

学生の声が聞こえる

川崎・毛利研究室では、1990年代半ばからロボットハンドの研究を行い、これまでに市販ロボットやヒューマノイドロボットに使われる人間型ロボットハンド（Gifu Hand）開発に携わっている。

市販化をみた人工筋肉ロボットハンド

1994年に研究がスタートした人工筋肉ロボットハンド（Gifu Hand）は、現在、Gifu Hand H31が市販型にデビューした。人工筋肉ロボットハンドは、人工による筋肉の活動を模倣するため、人体の筋肉に匹敵する能力を持つ。Gifu Hand H31は1つのプロックロッドを用いた模倣であるが、これによりより多様な動作を可能にしている。Gifu Hand H31は、より多様な動作を可能にしている。