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Lemma 2.7. Let P be a reduced knot projection. Then, tr(P ) = p(P )− 2 if and only if P is one of the

projections of positive or negative 3-braid knot diagrams as illustrated in Fig. 3 and the projections of the

connected sum of a (2, r)-torus knot diagram and a (2, s)-torus knot diagram for some odd integers r, s ̸= ±1.

Proof. First, we show the ‘if’ part. If P is one of the projections of the connected sum of a (2, r)-torus knot

diagram and a (2, s)-torus knot diagram, it follows from Theorem 2.6 and Proposition 2.2 that tr(P ) = p(P )−
2. Suppose that P is one of the projections of positive 3-braid diagrams. By Theorem 2.6, tr(P ) ≤ p(P )−2.

Assume that tr(P ) < p(P )− 2. Let Q be a trivial pseudo diagram which realizes the trivializing number of

P . Let p1, p2, . . . , pn be the pre-crossings of Q. Then n ≥ 3 since tr(P ) < p(P )−2. Let P ′ be the projection

obtained from P by smoothing p1, p2, . . . , pn. Then P ′ is a projection of (n + 1)-component link diagram

from Proposition 2.4. This contradicts that P is one of the projections of positive 3-braid knot diagrams.

Next, we show the ‘only if’ part. If P is not prime, P is the projection of the connected sum of a (2, r)-

torus knot diagram and a (2, s)-torus knot diagram for some odd integers r, s ̸= ±1 from Proposition 2.3,

Theorem 2.6 and Proposition 2.2.

Suppose that P is prime. We show that one of the components of Pp is a projection of a (2, t)-torus knot

diagram for some odd integer t and the other component of Pp has no self pre-crossings for any pre-crossing

p where Pp is the projections obtained from P by smoothing p. Namely, for any chord d there exists a

chord which does not cross d in CDP . Let P1 and P2 be the knot projections of Pp. If each of P1 and P2

has no pre-crossings, this implies that p(P ) is odd. This contradicts that tr(P ) is even by Theorem 2.5. If

each of P1 and P2 has a pre-crossing, this implies that tr(P ) < p(P ) − 2. Without loss of generality, we

may assume that P1 has a pre-crossing. If P1 is not one of the projections of (2, t)-torus knot diagrams,

tr(P1) < p(P1) − 1 by Theorem 2.6. This implies that tr(P ) < p(P ) − 2 and hence contradicts. Therefore,

one of the components of Pp is the projection of a (2, t)-torus knot diagram for some odd integer t and the

other component of Pp has no self pre-crossings for any pre-crossing p.

We suppose that P1 is the projection of a (2, t)-torus knot diagram. Let p′ be a pre-crossing of P1 and

P ′
1 and P ′′

1 the knot projections obtained from P1 by smoothing p′ such that P ′′
1 has the pre-crossing p in

P . Note that each of P ′
1 and P ′′

1 does not have a pre-crossing. Let a1, a2, . . . , an (resp. b1, b2, . . . , bm) be the

pre-crossings of P ′
1 (resp. P

′′
1 ) and P2 which appear on P2 from p in this order along the orientation. We show

that a1, a2, . . . , an appear on P ′
1 from a certain point in this order along the orientation and also b1, b2, . . . , bm

appear on P ′′
1 from a certain point in this order along the orientation. The pre-crossings b1, b2, . . . , bm appear

on P ′′
1 from a certain point in this order along the orientation since one of the projections from P by smoothing

p′ is one of the projections of (2, s)-torus knot diagrams. Next, we show that the pre-crossings a1, a2, . . . , an

appear on P ′′
1 from a certain point in this order along the orientation. Suppose that n > 2. If there exists

a part of a chord diagram as illustrated in Figure 1 then this contradicts tr(P ) = p(P )− 2 by Theorem 2.5.
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Therefore, we consider the four cases as illustrated in Figure 2. The chord diagrams of these cases are as

in Figure 3. The point x joins x′ at each case in Figure 2. Then, let q be a pre-crossing where an arc from

x to x′ crosses a bold line. If q is on P ′′
1 , any two of the three chords corresponding to ak, al and q do not

cross in CDP and this implies tr(P ) < p(P ) − 2. If q is on P2, any two of the three chords corresponding

to ai, aj and q do not cross in CDP and this implies tr(P ) < p(P ) − 2. Thus, a1, a2, . . . , an appear on P ′
1

from a certain point in this order along the orientation. Therefore, P is one of the projections of positive or

negative 3-braid knot diagrams. �

ak

aj

ai

p

CDP

p P2

ai
aj

ak

Figure 1

p P2 P2

ai

al

aj

ak

ai

al

aj

ak

ai

al

aj

ak

ai

al

aj

ak

p'p'

p' p'

p

p P2

P1''

P1'' P1''

P1''

(i) (ii)

(iii) (iv) p P2

x x

xx

x' x'

x' x'

Figure 2

Acknowledgment

We would like to thank Professor Chuichiro Hayashi for pointing out a gap of the proof of Lemma 2.7.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail address: tetsuya@kurims.kyoto-u.ac.jp



THE UNKNOTTING NUMBER AND BAND-UNKNOTTING NUMBER OF A KNOT 3

ai

al

aj

ak

p

q

Figure 3

Department of Mathematics, Nara University of Education, Takabatake, Nara 630-8305, Japan

E-mail address: hanaki@nara-edu.ac.jp

Department of Mathematics, Kobe University, Rokko, Nada-ku Kobe 657-8501, Japan

E-mail address: higa@math.kobe-u.ac.jp


