THE UNKNOTTING NUMBER AND BAND-UNKNOTTING NUMBER OF A KNOT

TETSUYA ABE, RYO HANAKI AND RYUJI HIGA

Lemma 2.7. Let P be a reduced knot projection. Then, $\operatorname{tr}(P)=p(P)-2$ if and only if P is one of the projections of positive or negative 3-braid knot diagrams as illustrated in Fig. 3 and the projections of the connected sum of a $(2, r)$-torus knot diagram and a $(2, s)$-torus knot diagram for some odd integers $r, s \neq \pm 1$.

Proof. First, we show the 'if' part. If P is one of the projections of the connected sum of a $(2, r)$-torus knot diagram and a $(2, s)$-torus knot diagram, it follows from Theorem 2.6 and Proposition 2.2 that $\operatorname{tr}(P)=p(P)-$ 2. Suppose that P is one of the projections of positive 3-braid diagrams. By Theorem $2.6, \operatorname{tr}(P) \leq p(P)-2$. Assume that $\operatorname{tr}(P)<p(P)-2$. Let Q be a trivial pseudo diagram which realizes the trivializing number of P. Let $p_{1}, p_{2}, \ldots, p_{n}$ be the pre-crossings of Q. Then $n \geq 3$ since $\operatorname{tr}(P)<p(P)-2$. Let P^{\prime} be the projection obtained from P by smoothing $p_{1}, p_{2}, \ldots, p_{n}$. Then P^{\prime} is a projection of $(n+1)$-component link diagram from Proposition 2.4. This contradicts that P is one of the projections of positive 3 -braid knot diagrams.

Next, we show the 'only if' part. If P is not prime, P is the projection of the connected sum of a $(2, r)$ torus knot diagram and a $(2, s)$-torus knot diagram for some odd integers $r, s \neq \pm 1$ from Proposition 2.3, Theorem 2.6 and Proposition 2.2.

Suppose that P is prime. We show that one of the components of P_{p} is a projection of a $(2, t)$-torus knot diagram for some odd integer t and the other component of P_{p} has no self pre-crossings for any pre-crossing p where P_{p} is the projections obtained from P by smoothing p. Namely, for any chord d there exists a chord which does not cross d in $C D_{P}$. Let P_{1} and P_{2} be the knot projections of P_{p}. If each of P_{1} and P_{2} has no pre-crossings, this implies that $p(P)$ is odd. This contradicts that $\operatorname{tr}(P)$ is even by Theorem 2.5. If each of P_{1} and P_{2} has a pre-crossing, this implies that $\operatorname{tr}(P)<p(P)-2$. Without loss of generality, we may assume that P_{1} has a pre-crossing. If P_{1} is not one of the projections of $(2, t)$-torus knot diagrams, $\operatorname{tr}\left(P_{1}\right)<p\left(P_{1}\right)-1$ by Theorem 2.6. This implies that $\operatorname{tr}(P)<p(P)-2$ and hence contradicts. Therefore, one of the components of P_{p} is the projection of a $(2, t)$-torus knot diagram for some odd integer t and the other component of P_{p} has no self pre-crossings for any pre-crossing p.

We suppose that P_{1} is the projection of a $(2, t)$-torus knot diagram. Let p^{\prime} be a pre-crossing of P_{1} and P_{1}^{\prime} and $P_{1}^{\prime \prime}$ the knot projections obtained from P_{1} by smoothing p^{\prime} such that $P_{1}^{\prime \prime}$ has the pre-crossing p in P. Note that each of P_{1}^{\prime} and $P_{1}^{\prime \prime}$ does not have a pre-crossing. Let $a_{1}, a_{2}, \ldots, a_{n}$ (resp. $b_{1}, b_{2}, \ldots, b_{m}$) be the pre-crossings of P_{1}^{\prime} (resp. $P_{1}^{\prime \prime}$) and P_{2} which appear on P_{2} from p in this order along the orientation. We show that $a_{1}, a_{2}, \ldots, a_{n}$ appear on P_{1}^{\prime} from a certain point in this order along the orientation and also $b_{1}, b_{2}, \ldots, b_{m}$ appear on $P_{1}^{\prime \prime}$ from a certain point in this order along the orientation. The pre-crossings $b_{1}, b_{2}, \ldots, b_{m}$ appear on $P_{1}^{\prime \prime}$ from a certain point in this order along the orientation since one of the projections from P by smoothing p^{\prime} is one of the projections of $(2, s)$-torus knot diagrams. Next, we show that the pre-crossings $a_{1}, a_{2}, \ldots, a_{n}$ appear on $P_{1}^{\prime \prime}$ from a certain point in this order along the orientation. Suppose that $n>2$. If there exists a part of a chord diagram as illustrated in Figure 1 then this contradicts $\operatorname{tr}(P)=p(P)-2$ by Theorem 2.5.

2000 Mathematics Subject Classification. Primary 57M25.
Key words and phrases. The band-unknotting number of a knot.

Therefore, we consider the four cases as illustrated in Figure 2. The chord diagrams of these cases are as in Figure 3. The point x joins x^{\prime} at each case in Figure 2. Then, let q be a pre-crossing where an arc from x to x^{\prime} crosses a bold line. If q is on $P_{1}^{\prime \prime}$, any two of the three chords corresponding to a_{k}, a_{l} and q do not cross in $C D_{P}$ and this implies $\operatorname{tr}(P)<p(P)-2$. If q is on P_{2}, any two of the three chords corresponding to a_{i}, a_{j} and q do not cross in $C D_{P}$ and this implies $\operatorname{tr}(P)<p(P)-2$. Thus, $a_{1}, a_{2}, \ldots, a_{n}$ appear on P_{1}^{\prime} from a certain point in this order along the orientation. Therefore, P is one of the projections of positive or negative 3 -braid knot diagrams.

Figure 1

(ii)

(iii)

(iv)

Figure 2

Acknowledgment

We would like to thank Professor Chuichiro Hayashi for pointing out a gap of the proof of Lemma 2.7.
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
E-mail address: tetsuya@kurims.kyoto-u.ac.jp

Figure 3

Department of Mathematics, Nara University of Education, Takabatake, Nara 630-8305, Japan
E-mail address: hanaki@nara-edu.ac.jp

Department of Mathematics, Kobe University, Rokko, Nada-ku Kobe 657-8501, Japan
E-mail address: higa@math.kobe-u.ac.jp

