THE UNKNOTTING NUMBER AND BAND-UNKNOTTING NUMBER OF A KNOT

TETSUYA ABE, RYO HANAKI AND RYUJI HIGA

Lemma 2.7. Let P be a reduced knot projection. Then, tr(P) = p(P) - 2 if and only if P is one of the projections of positive or negative 3-braid knot diagrams as illustrated in Fig. 3 and the projections of the connected sum of a (2, r)-torus knot diagram and a (2, s)-torus knot diagram for some odd integers $r, s \neq \pm 1$.

Proof. First, we show the 'if' part. If P is one of the projections of the connected sum of a (2, r)-torus knot diagram and a (2, s)-torus knot diagram, it follows from Theorem 2.6 and Proposition 2.2 that tr(P) = p(P) -2. Suppose that P is one of the projections of positive 3-braid diagrams. By Theorem 2.6, $tr(P) \le p(P) - 2$. Assume that tr(P) < p(P) - 2. Let Q be a trivial pseudo diagram which realizes the trivializing number of P. Let p_1, p_2, \ldots, p_n be the pre-crossings of Q. Then $n \ge 3$ since tr(P) < p(P) - 2. Let P' be the projection obtained from P by smoothing p_1, p_2, \ldots, p_n . Then P' is a projection of (n + 1)-component link diagrams.

Next, we show the 'only if' part. If P is not prime, P is the projection of the connected sum of a (2, r)-torus knot diagram and a (2, s)-torus knot diagram for some odd integers $r, s \neq \pm 1$ from Proposition 2.3, Theorem 2.6 and Proposition 2.2.

Suppose that P is prime. We show that one of the components of P_p is a projection of a (2, t)-torus knot diagram for some odd integer t and the other component of P_p has no self pre-crossings for any pre-crossing p where P_p is the projections obtained from P by smoothing p. Namely, for any chord d there exists a chord which does not cross d in CD_P . Let P_1 and P_2 be the knot projections of P_p . If each of P_1 and P_2 has no pre-crossings, this implies that p(P) is odd. This contradicts that tr(P) is even by Theorem 2.5. If each of P_1 and P_2 has a pre-crossing, this implies that tr(P) < p(P) - 2. Without loss of generality, we may assume that P_1 has a pre-crossing. If P_1 is not one of the projections of (2, t)-torus knot diagrams, $tr(P_1) < p(P_1) - 1$ by Theorem 2.6. This implies that tr(P) < p(P) - 2 and hence contradicts. Therefore, one of the components of P_p is the projection of a (2, t)-torus knot diagram for some odd integer t and the other component of P_p has no self pre-crossings for any pre-crossing p.

We suppose that P_1 is the projection of a (2, t)-torus knot diagram. Let p' be a pre-crossing of P_1 and P''_1 and P''_1 the knot projections obtained from P_1 by smoothing p' such that P''_1 has the pre-crossing p in P. Note that each of P'_1 and P''_1 does not have a pre-crossing. Let a_1, a_2, \ldots, a_n (resp. b_1, b_2, \ldots, b_m) be the pre-crossings of P'_1 (resp. P''_1) and P_2 which appear on P_2 from p in this order along the orientation. We show that a_1, a_2, \ldots, a_n appear on P''_1 from a certain point in this order along the orientation and also b_1, b_2, \ldots, b_m appear on P''_1 from a certain point in this order along the orientation. The pre-crossings b_1, b_2, \ldots, b_m appear on P''_1 from a certain point in this order along the orientation. The pre-crossings b_1, b_2, \ldots, b_m appear on P''_1 from a certain point in this order along the orientation. The pre-crossings b_1, b_2, \ldots, b_m appear on P''_1 from a certain point in this order along the orientation. Suppose that n > 2. If there exists a part of a chord diagram as illustrated in Figure 1 then this contradicts tr(P) = p(P) - 2 by Theorem 2.5.

²⁰⁰⁰ Mathematics Subject Classification. Primary 57M25.

Key words and phrases. The band-unknotting number of a knot.

Therefore, we consider the four cases as illustrated in Figure 2. The chord diagrams of these cases are as in Figure 3. The point x joins x' at each case in Figure 2. Then, let q be a pre-crossing where an arc from x to x' crosses a bold line. If q is on P_1'' , any two of the three chords corresponding to a_k, a_l and q do not cross in CD_P and this implies tr(P) < p(P) - 2. If q is on P_2 , any two of the three chords corresponding to a_i, a_j and q do not cross in CD_P and this implies tr(P) < p(P) - 2. Thus, a_1, a_2, \ldots, a_n appear on P_1' from a certain point in this order along the orientation. Therefore, P is one of the projections of positive or negative 3-braid knot diagrams.

FIGURE 2

Acknowledgment

We would like to thank Professor Chuichiro Hayashi for pointing out a gap of the proof of Lemma 2.7.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN *E-mail address*: tetsuya@kurims.kyoto-u.ac.jp

FIGURE 3

DEPARTMENT OF MATHEMATICS, NARA UNIVERSITY OF EDUCATION, TAKABATAKE, NARA 630-8305, JAPAN *E-mail address:* hanaki@nara-edu.ac.jp

DEPARTMENT OF MATHEMATICS, KOBE UNIVERSITY, ROKKO, NADA-KU KOBE 657-8501, JAPAN *E-mail address*: higa@math.kobe-u.ac.jp