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Definition of projection
K : an oriented knot in R3

p : R3 → R2 : natural projection
p is a projection of a knot K
⇔ multiple points of p|K are 

only finitely many transversal 
double points.

We call p(K) a (knot) projection 
and denote it by P ＝ p(K).
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Motivation on pseudo diagram
Which double points of a projection and which 
over/under informations at them should we know in 
order to determine that the original knot is trivial or 
knotted?

We introduced a notion of the pseudo diagram in [H, 
2010].
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Definition of diagram
A diagram D is a projection P with 
over/under information 
at every double point.
Then we say D is obtained from P and 
P is the projection of D.
A diagram uniquely represents a knot up 
to equivalence.

Then a double point with (resp. without)
over/under information is called a crossing (resp. a 
pre-crossing).

P

D
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Definition of pseudo diagram

A pseudo diagram Q is a projection 
P with over/under information at 
some pre-crossings.
Thus, a pseudo diagram Q has 
crossings and pre-crossings.
Here, Q possibly has no crossings 
or no pre-crossings.
Namely, Q is possibly a projection 
or a diagram.

P

Q
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Relation between pseudo diagrams

Q, Q' : pseudo diagrams of a projection
A pseudo diagram Q' is obtained from a pseudo 
diagram Q.
⇔ Each crossing of Q has the same over/under 

information as Q'.
Ex.

Q'Q
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Trivial of pseudo diagrams
A pseudo diagram Q is trivial.
⇔ Any diagram obtained from Q represents a trivial 

knot.

Ex.

trivial
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Trivializing number
tr(P):＝min{ c(Q) | Q : trivial pseudo diagram obtained 

from P }
where c(Q) is the number of the crossings of Q.
We call tr(P) the trivializing number of P.

Ex.
tr（ ）＝2 tr（ ）＝4
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Chord diagram of a projection

P ： a knot projection with n pre-crossings
A chord diagram of P is a circle with n chords marked 
on it by dashed line segment, where the pre-image of 
each pre-crossing is connected by a chord.

Ex.
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Trivializing number and chord diagram
Theorem 1-1 [H, 2010] P ： a knot projection

tr(P) ＝ min{ n | Deleting some n chords from CDP
yields a chord diagram which does 
not contain a sub-chord diagram as 

} 
and tr(P) is even.

Ex. tr(P)＝4
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Result on trivializing number
Theorem 1-2 [H, 2010]
P ： knot projection
tr(P)＝2
⇔ P is obtained from

by a series of replacing a sub-arc of P as

Here, CDP is              ,
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Result on trivializing number
Theorem 1-3 [H, 2010]
P ： knot projection with pre-crossings
⇒ tr(P) ≦ p(P) ｰ 1

where p(P) is the number of the pre-crossings of P

The equality holds ⇔ P is

Here，CDP is
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Trivializing number of knots
tr(D) :＝ tr(P) where P is the projection of D
tr(K) :＝min{ tr(D) | A diagram D represents K }
We call tr(K) the trivializing number of K.
Note tr(K) is always even by Theorem 1-1.

A. Henrich etc. expand a notion of pseudo diagram 
for virtual knots.

arXiv:0908.1981v2
Then, they discuss relation between trivializing 
number and unknotting number (resp. genus) in the 
paper.
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Trivializing number and unknotting number
Proposition 2-1 [H, Henrich-etc.]

u(K) ≦ ―tr(K)

where u(K) is the unknotting of K
Proof. It follows from the definition of the trivializing 
number and a fact that a mirror diagram of a trivial 
knot is also trivial.

Theorem 2-2 [Henrich-etc.]

g(K) ≦ ―tr(K)

where g(K) is the genus of K

1
2

1
2
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Results 
Theorem 2-3

tr(K) ＝ 2 ⇔ K is a twist knot
Proof. It follows from Theorem 1-2.

Theorem 2-4
K ： nontrivial knot ⇒ 2 ≦ tr(K) ≦ c(K) ｰ 1
where c(K) is the crossing number of K
tr(K) ＝ c(K) ｰ 1 ⇔ K is a (2, p)-torus knot
Proof. It follows from Theorem 1-3.
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Trivializing number of positive knots
Proposition 2-5
K : positive knot with up to 10 crossings
⇒ tr(K) ＝ 2u(K)

Moreover,
P : the projection of some positive diagram of K,
tr(P) ＝ tr(K)

Note [T. Nakamura '00]
There exist exactly 42 positive knots in up to 10 
crossing knots.
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Conjecture on positive knots
Conjecture ∀K ： positive knot, tr(K)＝2u(K)
Moreover,
∀D ： positive diagram of K, tr(D)＝tr(K)

Question [Stoimenow '03] 
Does every positive knot realize its unknotting 
number in a positive diagram?

Theorem 2-6
K ： positive braid knot ⇒ tr(K) = 2u(K)
Moreover, D ： positive braid diagram of K
⇒ tr(D) = 2u(K)
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Positive diagram and four genus
Theorem 2-7 [T.Nakamura '00, Rasmussen '04]
K : positive knot, D : positive diagram of K

2g4(K)＝2g(K)＝c(D)－O(D)＋1
where c(D) is the number of the crossings
and O(D) is the number of the Seifert circles 
and g4(K) is the minimum genus of a surface locally 
flatly embedded in the 4-ball with boundary K

Note s(K)＝c(D)－O(D)＋1, s(K) is the Rasmussen 
invariant for a positive knot K and a positive diagram 
D of K.

Proposition 2-8 u(K) ≧ g4(K)
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Proof of Theorem 2.6
Sketch Proof of Theorem 2-6.
D : positive braid diagram of K
P : the projection of D
By Propositions 2-1 and 2-8 and Theorem 2-7, 

tr(P) ≧ tr(K) ≧ 2u(K) ≧ 2g4(K) ＝ c(D)－O(D)＋1
On the other hand, 
tr(P)＝c(D)－O(D)＋1. 
Therefore, tr(K) ＝ 2u(K). ■ braid
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Mimimal diagram and trivializing number

Proposition 2-9 The knot 11550 does not have its 
trivializing number in minimal crossing diagrams. 
The positive 12 crossing diagram (b) realizes the 
trivializing number of 11550.

Note [Stoimenow '02] 11550 has only one 11 crossing 
diagram (a) which is not positive but has a positive 
12 crossing diagram (b).
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Mimimal diagram and trivializing number

There exists a knot whose minimal crossing diagrams 
have different trivializing number. 
For example, Perko’s pair which represent 10161 have 
different trivializing number.

Remark D, D' ： alternating diagram of K
⇒ tr(D)＝tr(D')
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ご清聴ありがとうございました
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