Trivializing number of knots

奈良教育大学花木 良

Contents

Definition of pseudo diagram \＆trivializing number
Results on trivializing number of projections
－Trivializing number of knots
Results on trivializing number of knots

Definition of projection

K ：an oriented knot in \mathbf{R}^{3}
$p: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}:$ natural projection
p is a projection of a knot K
\Leftrightarrow multiple points of $\left.p\right|_{K}$ are only finitely many transversal double points．
We call $p(K)$ a（knot）projection and denote it by $P=p(K)$ ．

Motivation on pseudo diagram

－Which double points of a projection and which over／under informations at them should we know in order to determine that the original knot is trivial or knotted？

－We introduced a notion of the pseudo diagram in $[\mathrm{H}$ ， 2010］．

Definition of diagram

A diagram D is a projection P with over／under information at every double point． Then we say D is obtained from P and P is the projection of D ．
A diagram uniquely represents a knot up to equivalence．

Then a double point with（resp．without）
 over／under information is called a crossing（resp．a pre－crossing）．

Definition of pseudo diagram

A pseudo diagram Q is a projection P with over／under information at some pre－crossings．
Thus，a pseudo diagram Q has crossings and pre－crossings．

Relation between pseudo diagrams

Q，Q^{\prime} ：pseudo diagrams of a projection A pseudo diagram Q^{\prime} is obtained from a pseudo diagram Q ．
\Leftrightarrow Each crossing of Q has the same over／under information as Q^{\prime} ．
Ex．

Trivial of pseudo diagrams

A pseudo diagram Q is trivial．
\Leftrightarrow Any diagram obtained from Q represents a trivial knot．

Ex．

Trivializing number

$\operatorname{tr}(P):=\min \{\mathrm{c}(Q) \mid Q:$ trivial pseudo diagram obtained from P \}
where $c(Q)$ is the number of the crossings of Q ． We call $\operatorname{tr}(P)$ the trivializing number of P ．

Ex．

Chord diagram of a projection

P ：a knot projection with n pre－crossings
A chord diagram of P is a circle with n chords marked on it by dashed line segment，where the pre－image of each pre－crossing is connected by a chord．

Trivializing number and chord diagram

Theorem 1－1［H，2010］P ：a knot projection $\operatorname{tr}(P)=\min \left\{n \mid\right.$ Deleting some n chords from $C D_{P}$ yields a chord diagram which does not contain a sub－chord diagram as （．） and $\operatorname{tr}(P)$ is even．

Ex． $\operatorname{tr}(P)=4$

2010／12／23 結び目の数学II『Trivializing number of knots』

Result on trivializing number

Theorem 1－2［H，2010］

P ：knot projection $\operatorname{tr}(P)=2$
$\Leftrightarrow P$ is obtained from

by a series of replacing a sub－arc of P as $) \rightarrow \chi$
Here，$C D_{P}$ is

Result on trivializing number

Theorem 1－3［H，2010］
P ：knot projection with pre－crossings
$\Rightarrow \operatorname{tr}(P) \leqq \mathrm{p}(P)-1$ where $\mathrm{p}(P)$ is the number of the pre－crossings of P

The equality holds $\Leftrightarrow P$ is

Here，$C D_{P}$ is

Trivializing number of knots

$\operatorname{tr}(D):=\operatorname{tr}(P)$ where P is the projection of D
$\operatorname{tr}(K):=\min \{\operatorname{tr}(D) \mid A$ diagram D represents K \} We call $\operatorname{tr}(K)$ the trivializing number of K ．
Note $\operatorname{tr}(K)$ is always even by Theorem 1－1．

A．Henrich etc．expand a notion of pseudo diagram for virtual knots． －arXiv：0908．1981v2
Then，they discuss relation between trivializing number and unknotting number（resp．genus）in the paper．

Trivializing number and unknotting number

Proposition 2－1［H，Henrich－etc．］

$u(K) \leqq \frac{1}{2} \operatorname{tr}(K)$
where $\mathrm{u}(K)$ is the unknotting of K
Proof．It follows from the definition of the trivializing number and a fact that a mirror diagram of a trivial knot is also trivial．

Theorem 2－2［Henrich－etc．］

$$
\mathrm{g}(K) \leqq \frac{1}{2} \operatorname{tr}(K)
$$

where $g(K)$ is the genus of K

Results

Theorem 2－3

$\operatorname{tr}(K)=2 \Leftrightarrow K$ is a twist knot
Proof．It follows from Theorem 1－2．
Theorem 2－4
K ：nontrivial knot $\Rightarrow 2 \leqq \operatorname{tr}(K) \leqq c(K)-1$ where $c(K)$ is the crossing number of K $\operatorname{tr}(K)=c(K)-1 \Leftrightarrow K$ is a $(2, p)$－torus knot Proof．It follows from Theorem 1－3．

Trivializing number of positive knots

Proposition 2－5

K ：positive knot with up to 10 crossings
$\Rightarrow \operatorname{tr}(K)=2 u(K)$
Moreover，
P ：the projection of some positive diagram of K ， $\operatorname{tr}(P)=\operatorname{tr}(K)$

Note［T．Nakamura＇00］
There exist exactly 42 positive knots in up to 10 crossing knots．

Conjecture on positive knots

Conjecture $\forall K$ ：positive knot， $\operatorname{tr}(K)=2 \mathrm{u}(K)$ Moreover，
$\forall D$ ：positive diagram of $K, \operatorname{tr}(D)=\operatorname{tr}(K)$
Question［Stoimenow＇03］
Does every positive knot realize its unknotting number in a positive diagram？

Theorem 2－6

K ：positive braid knot $\Rightarrow \operatorname{tr}(K)=2 u(K)$
Moreover，D ：positive braid diagram of K
$\Rightarrow \operatorname{tr}(D)=2 \mathrm{u}(K)$

Positive diagram and four genus

Theorem 2－7［T．Nakamura＇00，Rasmussen＇04］
K ：positive knot，D ：positive diagram of K

$$
2 g_{4}(K)=2 g(K)=c(D)-O(D)+1
$$

where $c(D)$ is the number of the crossings and $O(D)$ is the number of the Seifert circles and $g_{4}(K)$ is the minimum genus of a surface locally flatly embedded in the 4－ball with boundary K

Note $s(K)=c(D)-O(D)+1, s(K)$ is the Rasmussen invariant for a positive knot K and a positive diagram D of K ．

Proposition 2－8 $u(K) \geqq g_{4}(K)$

Proof of Theorem 2.6

Sketch Proof of Theorem 2－6．
D ：positive braid diagram of K
P ：the projection of D
By Propositions 2－1 and 2－8 and Theorem 2－7，

$$
\operatorname{tr}(P) \geqq \operatorname{tr}(K) \geqq 2 \mathrm{u}(K) \geqq 2 \mathrm{~g}_{4}(K)=c(D)-O(D)+1
$$

On the other hand， $\operatorname{tr}(P)=c(D)-O(D)+1$ ．
Therefore， $\operatorname{tr}(K)=2 u(K)$ ．

Mimimal diagram and trivializing number

Proposition 2－9 The knot 11_{550} does not have its trivializing number in minimal crossing diagrams． The positive 12 crossing diagram（b）realizes the trivializing number of 11_{550} ．

（a）
Note［Stoimenow＇02］ 11_{550} has only one 11 crossing diagram（a）which is not positive but has a positive 12 crossing diagram（b）．

Mimimal diagram and trivializing number

There exists a knot whose minimal crossing diagrams have different trivializing number．
For example，Perko＇s pair which represent 10_{161} have different trivializing number．

（a）

（b）

Remark D, D^{\prime} ：alternating diagram of K $\Rightarrow \operatorname{tr}(D)=\operatorname{tr}\left(D^{\prime}\right)$

ご清聴ありがとうございました

