On an inequality between unknotting number and crossing number of links

Graduate School of Education, Waseda University Junsuke Kanadome (joint work with Ryo Hanaki)

Definitions & Notations

Folklore

c(D): the number of crossings in D $c(L) := \min\{c(D) \mid D : \text{diagram of } L\}$ D is a minimal diagram of $L \Leftrightarrow c(D) = c(L)$

Proposition 1

$$u(L) \le u(D) \le \frac{c(D)}{2}, \quad u(L) \le \frac{c(L)}{2}$$

if D is a diagram of a link

$$u(K) \le u(D) \le \frac{c(D) - 1}{2}, \quad u(K) \le \frac{c(K) - 1}{2}$$

if D is a diagram of a knot K

L

<u>Theorem 1</u> [Taniyama, 2008] $L = \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_\mu : \mu$ -component link $D : \text{diagram of } L \text{ with } u(D) = \frac{c(D)}{2}$ $\Rightarrow \text{each } \gamma_i \text{ is a simple closed curve and}$ $\text{subdiagram } \gamma_i \cup \gamma_j \ (1 \le i < j \le \mu) \text{ is an alternating}$ diagram or a diagram without crossings.

Note that the diagram $\gamma_i \cup \gamma_j$ $(1 \le i < j \le \mu)$ is also a positive diagram or a negative diagram.

In addition, it holds that for any minimal diagram *D*

of L,
$$u(D) = \frac{c(D)}{2}$$

Note that each diagram is an alternating positive diagram or an alternating negative diagram.

Main Result

Main Theorem

 $L = \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_\mu : \mu \text{-component link}, D : \text{diagram of } L$ $u(D) = \frac{c(D) - 1}{2}$

 \Leftrightarrow just one component of *D* is one of the diagrams as

, the other components are simple closed curves , and the mutual crossings of subdiagram $\gamma_i \cup \gamma_j$ ($1 \le i < j \le \mu$) are all positive, all negative, or nothing.

Main Result

Characterization

Corollary 1

L: link with
$$u(L) = \frac{c(L) - 1}{2}$$

 $\Rightarrow L$ has a diagram D with $u(D) = \frac{c(D) - 1}{2}$

Proof of Corollary 1

D : a minimal diagram of L, that is, c(D) = c(L) $\frac{c(D)}{2} \ge u(D) \ge u(L) = \frac{c(L) - 1}{2} = \frac{c(D) - 1}{2}$

Here, c(L) is odd, and so is c(D).

We never admit
$$u(D) = \frac{c(D)}{2}$$
.
Therefore, $u(D) = \frac{c(D)-1}{2}$.

On the following slides

First we introduce corollaries on diagrams D with

 $u(D) \ge \frac{c(D)-1}{2}$ by Theorems 1 and 2 and Main Theorem.

Last we introduce a corollary and problems on the relations between unknotting number and minimal diagrams from the corollaries obtained above.

<u>Corollary 2</u>

 $D: \text{diagram with } u(D) \ge \frac{c(D)-1}{2}$

 \Rightarrow *D* represents the link *L* with u(L) = u(D)

Proof. It follows from the signature and linking number of the links presented by D in Theorems 1 and 2 and Main Theorem.

<u>Corollary 3</u>

$$D: \text{diagram with } u(D) \ge \frac{c(D) - 1}{2}$$

<u>Corollary 4</u>

$$D: \text{diagram with } u(D) \ge \frac{c(D)-1}{2}$$

L: the link represented by D

$$\Rightarrow u(L) = \frac{c(L)}{2}$$
 or $u(L) = \frac{c(L)-1}{2}$

Relations between unknotting number and minimal diagrams

 $\exists K : \text{knot which has no minimal diagrams } D \text{ with}$ u(D) = u(K)

ex. [Nakanishi, 1983] and [Bleiler, 1984]

Relations between unknotting number and minimal diagrams

 $\exists L : \text{link which has no minimal diagrams } D \text{ with}$ u(D) = u(L)

<u>Corollary 5</u>

 $L: \text{link with } u(L) \ge \frac{c(L) - 2}{2}$

D : a minimal diagram of *L*, that is, c(D) = c(L) $\Rightarrow u(D) = u(L)$

Proof of Corollary 5

If $u(L) \ge \frac{c(L) - 1}{2}$, it follows from Theorem 2 and the

proof of Corollary 1.

If
$$u(L) = \frac{c(L) - 2}{2}$$
, by Corollary 4, $u(D) \le \frac{c(D) - 2}{2}$.
Therefore, $\frac{c(L) - 2}{2} = u(L) \le u(D) \le \frac{c(D) - 2}{2} = \frac{c(L) - 2}{2}$.

Problem

Problem 1

Find minimum number *n* such that

$$\exists K : \text{knot with } u(K) = \frac{c(K) - n}{2}$$

which has no minimal diagrams *D* with u(D) = u(K)

We see from Corollary 5 and a P(5,1,4) knot *K*
with
$$u(K) = 2 = \frac{10-6}{2}$$
 that $3 \le n \le 6$.

Problem

Problem 2

Find minimum number *n* such that

$$\exists L : \text{link with } u(L) \ge \frac{c(L) - n}{2}$$

which has no minimal diagrams *D* with u(D) = u(L)

We see from Corollary 5 and a P(4,1,4) link *L*

with
$$u(L) = 2 = \frac{9-5}{2}$$
 that $3 \le n \le 5$.

Thank you for listening