On an inequality between unknotting number and crossing number of links

Graduate School of Education, Waseda University
Junsuke Kanadome
(joint work with Ryo Hanaki)

Definitions \& Notations

L : oriented link in $\mathrm{S}^{3}, D:$ diagram of L on S^{2} $u(D):=\min \{n \mid$ changing some n crossings of D yields a trivial link diagram $\}$
$u(L):=\min \{u(D) \mid D:$ diagram of $L\}$
ex. L : Whitehead link
: mutual crossing

$$
u(D)=2
$$

$$
u\left(D^{\prime}\right)=1
$$

$$
u(L)=1
$$

Folklore

$c(D)$: the number of crossings in D
$c(L):=\min \{c(D) \mid D:$ diagram of $L\}$
D is a minimal diagram of $L \Leftrightarrow c(D)=c(L)$
Proposition 1
$u(L) \leq u(D) \leq \frac{c(D)}{2}, \quad u(L) \leq \frac{c(L)}{2}$
if D is a diagram of a link L

$$
\begin{aligned}
& u(K) \leq u(D) \leq \frac{c(D)-1}{2}, \quad u(K) \leq \frac{c(K)-1}{2} \\
& \text { if } D \text { is a diagram of a knot } K
\end{aligned}
$$

Known Results

Theorem 1 [Taniyama, 2008]
$L=\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{\mu}: \mu$-component link
$D:$ diagram of L with $\quad u(D)=\frac{c(D)}{2}$
\Rightarrow each γ_{i} is a simple closed curve and
subdiagram $\gamma_{i} \cup \gamma_{j}(1 \leqq i<j \leqq \mu)$ is an alternating diagram or a diagram without crossings.

Note that the diagram $\gamma_{i} \cup \gamma_{j}(1 \leqq i<j \leqq \mu)$ is also a positive diagram or a negative diagram.

Known Results

Known Results

Theorem 2 [Taniyama, 2008]
$L:$ link with $\quad u(L)=\frac{c(L)}{2}$
$\Rightarrow L$ has a diagram D with $u(D)=\frac{c(D)}{2}$

In addition, it holds that for any minimal diagram D
of $L, u(D)=\frac{c(D)}{2}$.

Known Results

Theorem 3 [Taniyama, 2008]
D : diagram of a knot with

$$
u(D)=\frac{c(D)-1}{2}
$$

$\Rightarrow D$ is one of the diagrams as

Note that each diagram is an alternating positive diagram or an alternating negative diagram.

Known Results

Theorem 4 [Taniyama, 2008]
$K:$ knot with $u(K)=\frac{c(K)-1}{2}$
$\Rightarrow K$ has a diagram D with $u(D)=\frac{c(D)-1}{2}$

Main Result

Main Theorem

$$
\begin{aligned}
& L=\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{\mu}: \mu \text {-component link, } D: \text { diagram of } L \\
& u(D)=\frac{c(D)-1}{2}
\end{aligned}
$$

\Leftrightarrow just one component of D is one of the diagrams as

, the other components are simple closed curves , and the mutual crossings of subdiagram $\gamma_{i} \cup \gamma_{j}(1 \leqq i<$ $j \leqq \mu)$ are all positive, all negative, or nothing.

Main Result

the subdiagrams

Characterization

Corollary 1

$L:$ link with $u(L)=\frac{c(L)-1}{2}$
$\Rightarrow L$ has a diagram D with $u(D)=\frac{c(D)-1}{2}$

Proof of Corollary 1

D : a minimal diagram of L, that is, $c(D)=c(L)$

$$
\frac{c(D)}{2} \geq u(D) \geq u(L)=\frac{c(L)-1}{2}=\frac{c(D)-1}{2}
$$

Here, $c(L)$ is odd, and so is $c(D)$.
We never admit $u(D)=\frac{c(D)}{2}$.
Therefore, $u(D)=\frac{c(D)-1}{2} . \square$

On the following slides

First we introduce corollaries on diagrams D with $u(D) \geq \frac{c(D)-1}{2}$ by Theorems 1 and 2 and Main Theorem.
Last we introduce a corollary and problems on the relations between unknotting number and minimal diagrams from the corollaries obtained above.

Corollary 2

Corollary 2

D : diagram with $u(D) \geq \frac{c(D)-1}{2}$
$\Rightarrow D$ represents the $\operatorname{link} L$ with $u(L)=u(D)$

Proof. It follows from the signature and linking number of the links presented by D in Theorems 1 and 2 and Main Theorem.

Remark

$\exists D:$ diagram with $u(D)=\frac{c(D)-2}{2}$

which represents the link L with $u(L) \neq u(D)$

Corollary 3

Corollary 3

D : diagram with $u(D) \geq \frac{c(D)-1}{2}$
L : the link represented by D
$\Rightarrow c(D)-1 \leqq c(L) \leqq c(D)$
ex. $u(D)=\frac{c(D)-1}{2}$ and $c(D)-1=c(L)$

Corollary 4

Corollary 4

$D:$ diagram with $u(D) \geq \frac{c(D)-1}{2}$
L : the link represented by D
$\Rightarrow u(L)=\frac{c(L)}{2}$ or $u(L)=\frac{c(L)-1}{2}$

Relations between unknotting number and minimal diagrams

$\exists K$: knot which has no minimal diagrams D with

$$
u(D)=u(K)
$$

ex. [Nakanishi, 1983] and [Bleiler, 1984]

D : the minimal diagram

Relations between unknotting number and minimal diagrams

$\exists L$: link which has no minimal diagrams D with

$$
u(D)=u(L)
$$

ex.
$L: \mathrm{P}(4,1,4)$
$u(K)=2=u\left(D^{\prime}\right)$

$u(D)=3$
D : the minimal diagram

D'

Corollary 5

Corollary 5

$L:$ link with $u(L) \geq \frac{c(L)-2}{2}$
D : a minimal diagram of L, that is, $c(D)=c(L)$

$$
\Rightarrow u(D)=u(L)
$$

Proof of Corollary 5

If $u(L) \geq \frac{c(L)-1}{2}$, it follows from Theorem 2 and the proof of Corollary 1.

If $u(L)=\frac{c(L)-2}{2}$, by Corollary $4, u(D) \leq \frac{c(D)-2}{2}$.
Therefore, $\frac{c(L)-2}{2}=u(L) \leq u(D) \leq \frac{c(D)-2}{2}=\frac{c(L)-2}{2}$. \square

Problem

Problem 1

Find minimum number n such that
$\exists K$: knot with $u(K)=\frac{c(K)-n}{2}$
which has no minimal diagrams D with $u(D)=u(K)$

We see from Corollary 5 and a $\mathrm{P}(5,1,4)$ knot K
with $u(K)=2=\frac{10-6}{2}$ that $3 \leqq n \leqq 6$.

Problem

Problem 2

Find minimum number n such that
$\exists L:$ link with $u(L) \geq \frac{c(L)-n}{2}$
which has no minimal diagrams D with $u(D)=u(L)$

We see from Corollary 5 and a $\mathrm{P}(4,1,4) \operatorname{link} L$
with $u(L)=2=\frac{9-5}{2}$ that $3 \leqq n \leqq 5$.

Thank you for listening

