On Intrinsically Knotted or Completely 3-Linked Graphs

(新國 亮氏、谷山 公規氏、山崎 晶子氏との共同研究)

早稲田大学大学院 教育学研究科 花木良

Contents

- Background
 - Intrinsically knottedness, Intrinsically linkedness etc.
- Motivation
 - \bullet Δ Y-move & $Y\Delta$ -move
 - Flapan-Naimi's example
- Results
 - On intrinsically knotted or completely 3-linkedness
 - On minor minimality
- Related Topics
 - Intrinsically knotted or 3-linkedness
- Questions

Definition

G: finite graph

 $f: G \to \mathbf{S}^3$: spatial embedding of G

We call f(G) a spatial graph.

Definition

G is intrinsically linked (IL)

 $\Leftrightarrow \forall f(G) \supset \text{nonsplittable link}$

G is intrinsically knotted (IK)

 $\Leftrightarrow \forall f(G) \supset \text{nontrivial knot}$

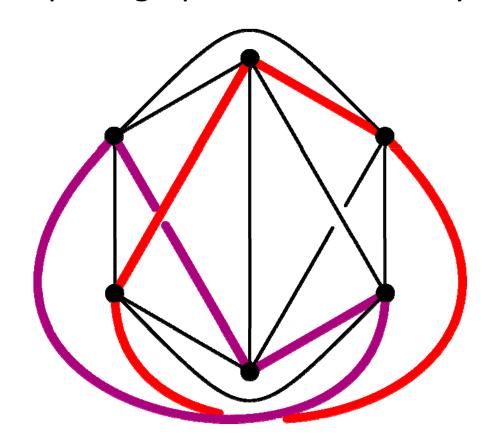
G is intrinsically 3-linked (I3L)

 $\Leftrightarrow \forall f(G) \supset \text{nonsplittable 3-component link}$

Intrinsically linked graph

Theorem [Sachs, Conway-Gordon]

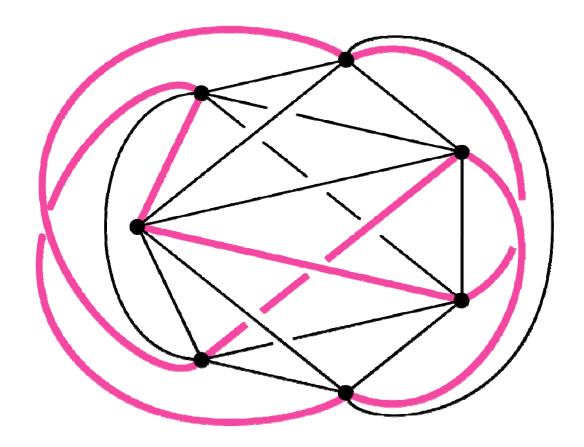
Complete graph K_6 is intrinsically linked



Intrinsically knotted graph

Theorem [Conway-Gordon]

Complete graph K_7 is intrinsically knotted



Intrinsically 3-linked graph

Theorem [Flapan-Naimi-Pommersheim] Complete graph K_{10} is intrinsically 3-linked.

Note [Flapan-Naimi-Pommersheim]

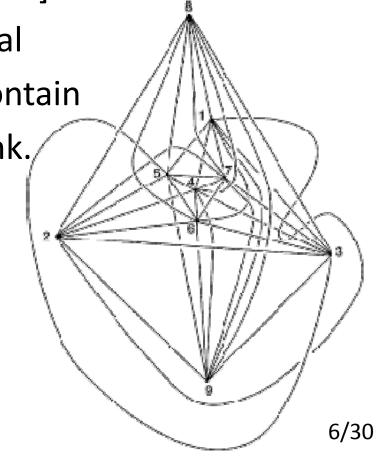
Complete graph K_9 has a spatial

embedding which does not contain

nonsplittable 3-component link.

Namely, K₉ is not intrinsically

3-linked.

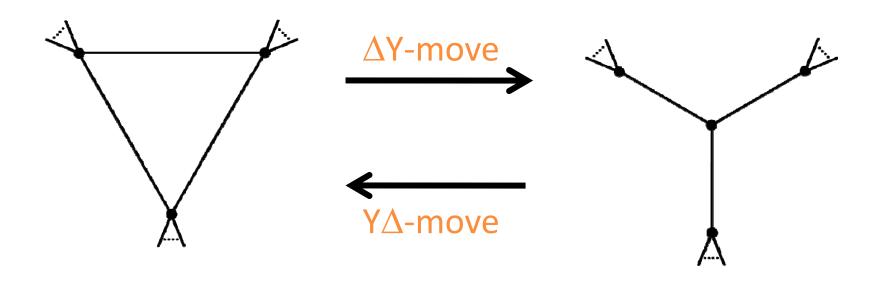


ΔY - and $Y\Delta$ -moves

Definition

A \triangle Y-move on a graph consists of removing the edges of a 3-cycle, and adding a new vertex adjacent to the three vertices of the 3-cycle.

A $Y\Delta$ -move is the inverse transformation.



Δ Y-move and IK, IL and I3L

Remark

- $G \rightarrow G'$; ΔY -move
- G is intrinsically linked
- \Rightarrow G' is also intrinsically linked.
- G is intrinsically knotted
- \Rightarrow G' is also intrinsically knotted.
- G is intrinsically 3-linked
- \Rightarrow G' is also intrinsically 3-linked.

Namely, ΔY -move preserves intrinsically linkedness, intrinsically knottedness, and intrinsically 3-linkedness.

Characterization on Intrinsically linkedness

Theorem (Sachs' linkless embedding conjecture)

[Robertson-Seymour-Thomas]

G is intrinsically linked

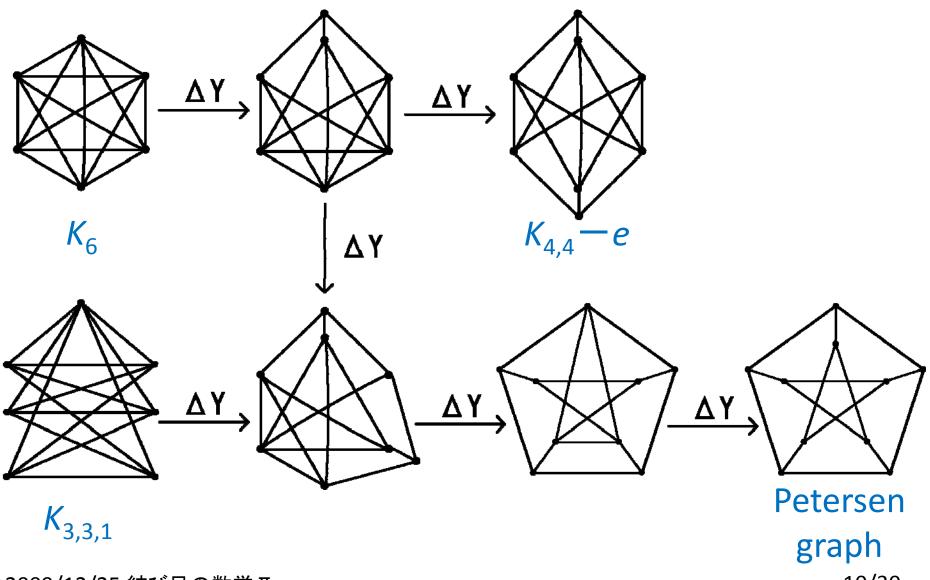
 \Leftrightarrow *G* contains a graph obtained from K_6 by ΔY - and $Y\Delta$ -moves as a minor

(i.e. G contains a graph of Petersen family as a minor)

Note

The set of graphs obtained from K_6 by ΔY - and $Y\Delta$ -moves is called Petersen family .

Petersen family



2009/12/25 結び目の数学Ⅱ

10/30

$Y\Delta$ -move on Intrinsically linked graphs

Corollary [Robertson-Seymour-Thomas]

 $G \rightarrow G'$; $Y\Delta$ -move

G is intrinsically linked

 \Rightarrow G' is also intrinsically linked

Note

 ΔY - and $Y\Delta$ -move preserve intrinsically linkedness.

Flapan-Naimi's Theorem

Theorem [Flapan-Naimi]

 $Y\Delta$ -move does not preserve intrinsically knottedness

Note

 ΔY -move preserves intrinsically knottedness

Flapan-Naimi showed that

 \exists FN : the graph obtained from K_7 by Δ Y-moves and $\underline{\mathsf{two}}$ Y Δ -moves s.t. FN is not intrinsically knotted

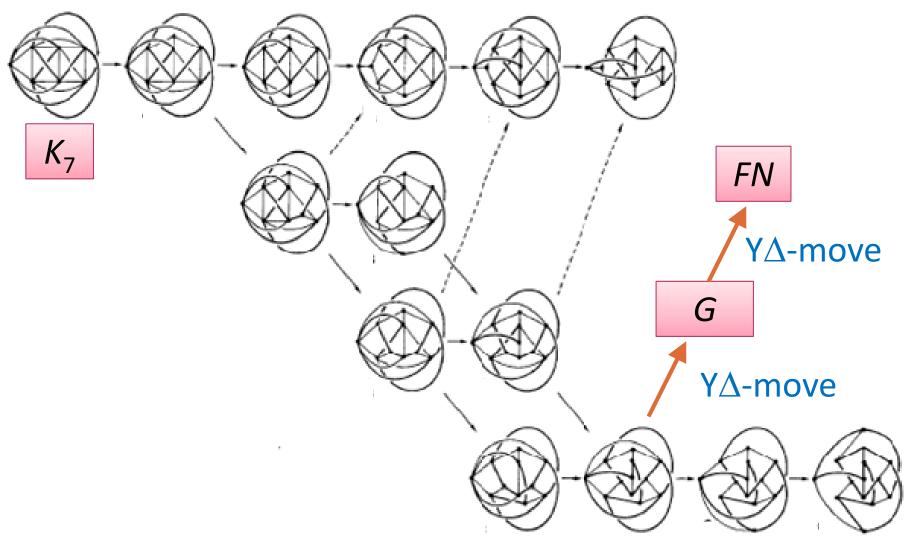
Graphs obtained from K_7 by ΔY -moves

Theorem [Kohara-Suzuki]

The thirteen graphs are obtained from K_7 by ΔY moves.

In addition, these graphs are minor minimal w. r. t. intrinsically knottedness.

Graphs obtained from K_7 by ΔY -moves



Motivation

- Is a graph obtained from K_7 by ΔY -moves and one $Y\Delta$ -move intrinsically knotted?
- How many graphs are obtained from K_7 by ΔY -and $Y\Delta$ -moves? In addition, is each of these graphs intrinsically knotted?

Main Theorem

Theorem [H-Nikkuni-Taniyama-Yamazaki]

The nineteen graphs obtained from K_7 by ΔY - and $Y\Delta$ -moves are intrinsically knotted or completely 3-linked. In addition, these graphs are minor minimal w. r. t. intrinsically knotted or completely 3-linkedness.

Definition

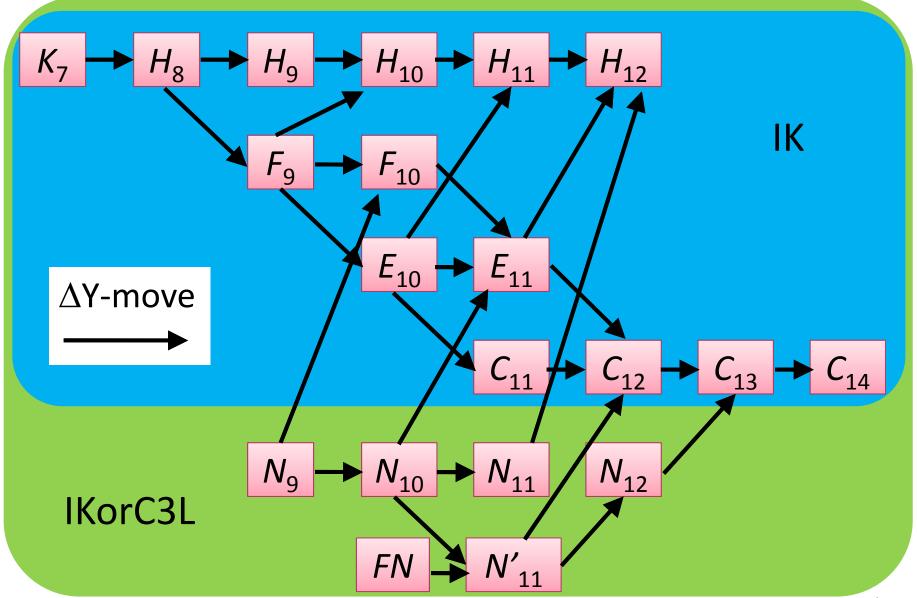
G is intrinsically knotted or completely 3-linked (IKorC3L)

 $\Leftrightarrow \forall f(G) \supset$ nontrivial knot <u>or</u> 3-component link each of whose 2-component sublink is nonsplittable

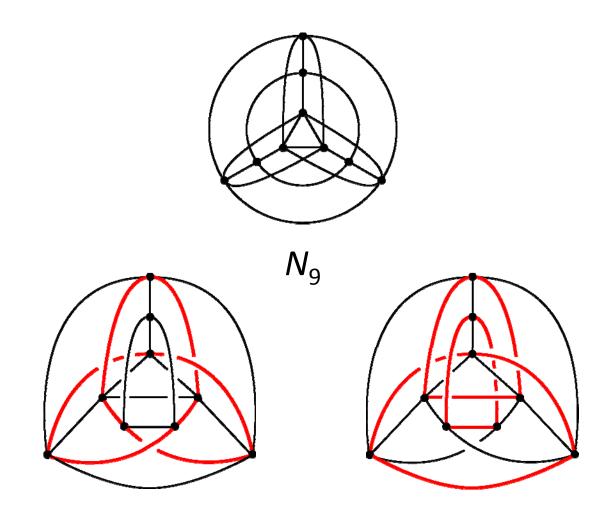
Note G is intrinsically knotted

 \Rightarrow G is intrinsically knotted or completely 3-linked

Graphs obtained from K_7 by ΔY - and $Y\Delta$ -moves



Intrinsically knotted or completely 3-linked graph



Corollary

Note

Each of N_9 , N_{10} , N_{11} , N'_{11} , N_{12} and FN is neither intrinsically knotted nor intrinsically completely 3-linked.

Corollary [H-Nikkuni-Taniyama-Yamazaki]

G: graph obtained from K_7 by ΔY - and $Y\Delta$ -moves but not obtained from K_7 by ΔY -moves

 \Rightarrow G is not intrinsically knotted

Δ Y-move on IKorC3L

Proposition

 $G \rightarrow G'$; ΔY -move

G is intrinsically knotted or completely 3-linked

 \Rightarrow G' is also intrinsically knotted or completely 3-linked

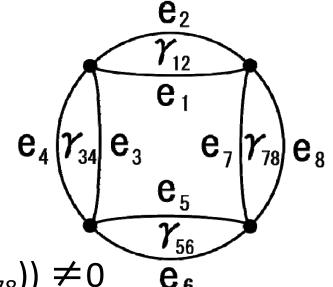
Then we show that N_9 and FN are intrinsically knotted or completely 3-linked.

Tool of Proof

Lemma [Taniyama-Yasuhara, Foisy]

f: a spatial embedding of D_4

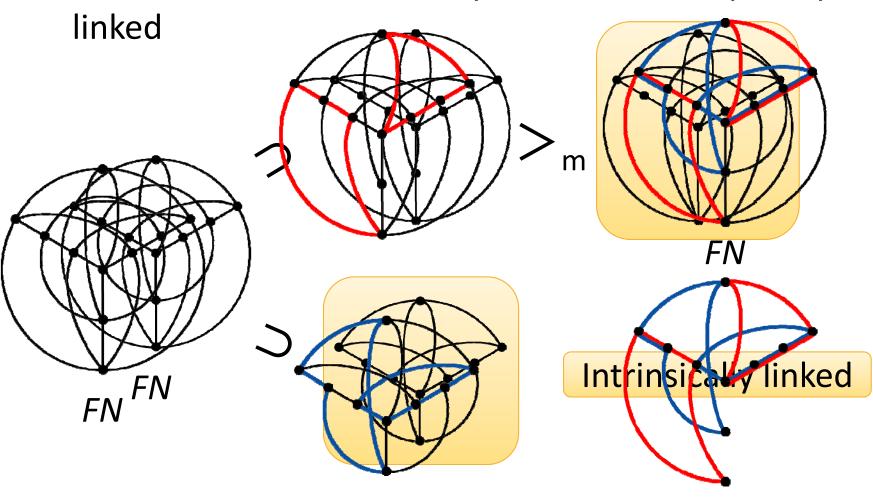
$$\sum_{4-\text{cycle }\gamma\subset D_4} a_2(f(\gamma)) \equiv 1 \pmod{2}$$



 \Leftrightarrow $\text{lk}_2(f(\gamma_{12} \cup \gamma_{56})) \times \text{lk}_2(f(\gamma_{34} \cup \gamma_{78})) \neq 0$ e_6 where a_2 is the second coefficient of the Conway polynomial and lk_2 is mod 2 linking number.

Sketch of Proof

Proof that FN is intrinsically knotted or completely 3-

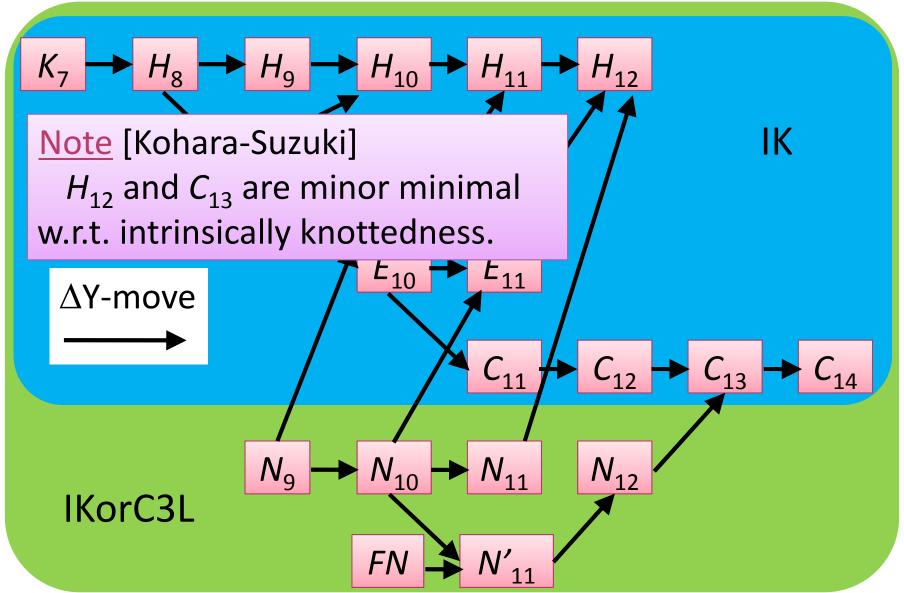


Proposition on Minor minimality

Proposition [H-Nikkuni-Taniyama-Yamazaki]

- G, G': intrinsically knotted or completely 3-linked graphs
- G' is obtained from G by a ΔY -move
- G' is minor minimal w.r.t. intrinsically knotted or completely 3-linkedness
- \Rightarrow G is minor minimal w.r.t. intrinsically knotted or completely 3-linkedness

On Minor minimal w.r.t. IKorC3L



Intrinsically knotted or 3-linked

Definition [Foisy]

G is intrinsically knotted or 3-linked (IKor3L)

 $\Leftrightarrow \forall f(G) \supset$ nontrivial knot <u>or</u> nonsplittable 3-component link

Proposition

 Δ Y-move preserves IKor3L

Note

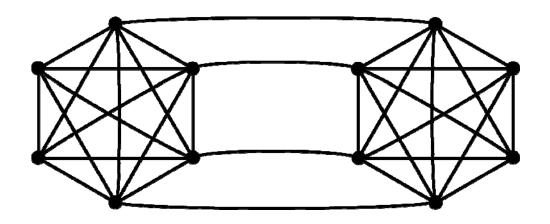
G is intrinsically knotted or completely 3-linked

 \Rightarrow G is intrinsically knotted or 3-linked

Results on Intrinsically knotted or 3-linked

Theorem [Foisy]

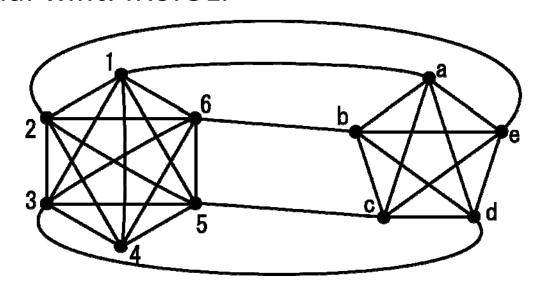
 $K_6 *_4 K_6$ is intrinsically knotted or 3-linked but is neither intrinsically knotted nor intrinsically 3-linked.



Results on Intrinsically knotted or 3-linked

Theorem [Yamazaki]

 $K_6 *_5 K_5$ is IKor3L but is neither IK nor I3L, and minor minimal w.r.t. IKor3L.



Proposition [Yamazaki]

 $Y\Delta$ -move does not preserve intrinsically knotted or 3-linked.

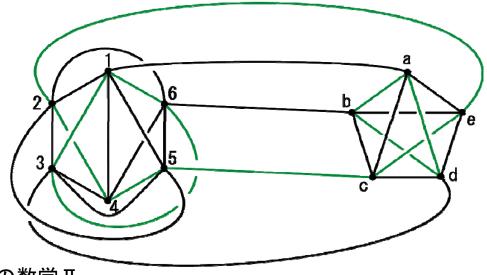
Note on Intrinsically knotted or 3-linked

Note

Each of $K_6 *_4 K_6$ and $K_6 *_5 K_5$ is not IKorC3L.

Example

The following spatial embedding of $K_6 *_5 K_5$ does not contain nontrivial knot and 3-component link each of whose 2-component sublink is nonsplittable.



28/30

Table on moves

intrinsically	Δ Y-move	Y∆-move
Linked	0	O [Robertson-Seymour- Thomas]
Knotted	0	× [Flapan-Naimi]
3-linked	0	?
Knotted or 3-linked	0	× [Yamazaki]
Knotted or completely 3-linked	0	?

○…preserve ×…not preserve ?…unknown 2009/12/25 結び目の数学Ⅱ

Questions

- Does a Y∆-move preserve intrinsically knotted or completely 3-linkedness?
- It is known that $K_{3,3,1,1}$ is intrinsically knotted. Is each of the graphs obtained from $K_{3,3,1,1}$ by ΔY - and $Y\Delta$ -moves intrinsically knotted or completely 3-linked?

Thank you for listening