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1 Introduction

First, we give the definitions of pseudo diagram and the trivializing number and
results on it. Next, we define the trivializing number for knots and introduce
results.

1.1 Definition

We consider knots in R3. Let p be a natural projection from R3 to R2. We say
that p is a projection of K if the multiple points of p|K are only finitely many
transversal double points. Then we call p(K) a (knot) projection and denote
it by P = p(K). See Fig. 1. A diagram D is a projection P with over/under
information at every double point. A diagram D uniquely represents a knot up
to ambient isotopy.
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Figure 1: Knot projection

We have the following question.

Question 1 Can we determine from P whether the original knot is trivial or
knotted?



We cannot determine it except some special cases. Because we do not know
over/under information at each double point of P . For example, let P be a
projection of a knot with 3 double points as illustrated in Fig. 2. Then we have
23 diagrams obtained from P . Two diagrams represent nontrivial knots and six
diagrams represent the trivial knots.

Figure 2: Projection and diagrams obtained from it

Then we have a natural question.

Question 2 Which double points of a projection and which over/under infor-
mations at them should we know in order to determine that the original knot is
trivial or knotted?

We introduced a notion of the pseudo diagram in [2]. In this paper, a double
point with over/under information is called a crossing, in contrast a double point
without over/under information is called a pre-crossing. We say that a pseudo
diagram Q is a projection P with over/under information at some pre-crossings
of P . Here, we allow the possibility that a pseudo diagram is a projection or a
diagram. Let Q and Q′ be pseudo diagrams of a projection. Then we say that
a pseudo diagram Q′ is obtained from a pseudo diagram Q if each crossing of Q
has the same over/under information with Q′. A pseudo diagram Q is said to be
trivial if for any diagram D obtained from Q, D represents the trivial knot. For
example, in Fig. 3, (a) is trivial, both (b) and (c) are not trivial.
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Figure 3: Pseudo diagrams

We define that the trivializing number of P is the minimal number of the
crossings of Q where Q varies over all trivial pseudo diagrams obtained from P .
We denote the trivializing number of P by tr(P ). In [2], similarly we gave the
definitions of the knotted pseudo diagram and the knotting number and study it.
In this paper, we narrow focus on trivializing number. For example, let P be the
projection as illustrated in Fig. 2, then tr(P ) = 2.

1.2 Results on pseudo diagrams

We introduce the results on trivial pseudo diagrams and a method for calculating
the trivializing number of a projection.



Theorem 1 For any projection P , the trivializing number of P is even.

Proposition 2 For any non-negative even number n, there exists a projection P
with tr(P ) = n.

For example, the projection as illustrated in Fig. 4 where m = n + 1 has
trivializing number n.

m pre-crossings
}

Figure 4: Pseudo diagrams

We introduce a chord diagram to calculate the trivializing number of a projec-
tion. Let Q be a pseudo diagram with n pre-crossings. A chord diagram of Q is a
circle with n chords marked on it by dashed line segment where the preimage of
each pre-crossing is connected by a chord. We denote it by CDQ. For example,
let Q be a pseudo diagram (a) in Fig. 5. Then a chord diagram (b) in Fig. 5
is CDQ. Note that for each chord of a chord diagram of a projection, each of
the two arcs in the circle bounded by the end points of the chord contains even
number of end points of the other chords.

(a) (b) (c)

Figure 5: Chord diagram.

We have the following lemmas.

Lemma 3 Let Q be a pseudo diagram such that CDQ contains a sub-chord dia-
gram as Fig. 5(c). Then Q is not trivial.

Proof. Let Q′ be a pseudo diagram obtained from Q such that CDQ′ is
the chord diagram as Fig. 5(c). Let p1, p2 be the pre-crossings of Q′. We give
an orientation to a circle. Let K1, K2, K3 and K4 be the knots represented by
D++, D+−, D−+ and D−− respectively where D+− is obtained from Q′ by changing
p1 to be a positive crossing and p2 to be a negative crossing. Note that these knots



are obtained from Q. Then, a2(K1)− a2(K2)− a2(K3) + a2(K4) = 1 holds where
a2 is the second coefficient of the Conway polynomial. At least one of K1, K2, K3

and K4 is nontrivial since a2 of the trivial knot is zero. Therefore, Q is not trivial.
¤

Lemma 4 Let P be a projection. Let CD be a sub-chord diagram of CDP such
that CD does not contain a sub-chord diagram as Fig. 5(c). Then there exists a
trivial pseudo diagram Q obtained from P such that CDQ = CD.

Proof. Let p1 be a pre-crossing of P which corresponds to an outer most
chord c1 in CD and l1 the sub-arc on P which corresponds to the outer most arc.
By giving over/under information to each pre-crossing on l1 so that l1 goes over
the others as in Fig. 6, we obtain a pseudo diagram Q1 from P . Next, let p2 be a
pre-crossing of Q1 which corresponds to an outer most chord c2 under forgetting
c1 in CD, and l2 the sub-arc on Q1 which corresponds to the outer most arc.
By giving over/under information to each pre-crossing on l2 so that l2 goes over
the others except l1, we obtain a pseudo diagram Q2 from Q1. By repeating this
procedure until all of the chords are forgotten, we obtain a pseudo diagram Q
from P . For any diagram D obtained from Q, first we can vanish the crossings
on l1 and the crossing corresponding to p1, next we can vanish the crossings on
l2 and the crossing corresponding to p2, similarly we can vanish all crossings of
D. Therefore, we see that Q is trivial. ¤
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Figure 6:

For a projection P , by applying Lemmas 3 and 4, we can calculate tr(P ) from
CDP . For example, let P be a projection as (a), then CDP is the chord diagram
as (b) in Fig. 7. Any chord diagram obtained from CDP by deleting at most three
chords contains a sub-chord diagram as Fig. 5(c). A chord diagram CD obtained
from CDP by deleting four chords as (c) in Fig. 7 does not contain a sub-chord
diagram as Fig. 5(c). Therefore, we get tr(P ) = 4 and a pseudo diagram (d) in
Fig. 7 is a trivial pseudo diagram which realizes the trivializing number of P .

We see from Lemmas 3 and 4 and the property of a knot projection that
Theorem 1 holds.

We have the following theorems by applying Lemmas 3 and 4.
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Figure 7:

Theorem 5 Let P be a projection. Then tr(P ) = 2 if and only if P is obtained
from the projection as illustrated in Fig. 8 (a) where m is a positive integer by a
series of replacing a sub-arc of P as illustrated in Fig. 8 (b).

m pre-crossings
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m : odd m : even

Figure 8:

Theorem 6 Let P be a projection with at least one pre-crossing. Then it holds
that tr(P ) ≤ p(P )−1. The equality holds if and only if P is one of the projections
as illustrated in Fig. 4 where m is a positive odd integer.

1.3 On pseudo diagrams for virtual knots

Recently, A. Henrich etc. expanded pseudo diagrams for virtual knots in [4].
They discuss relation between trivializing number and unknotting number (resp.
genus) in the paper.

2 Trivializing number for knots

We define the trivializing number for knots and study it.
Let K be a knot, we define the following:

tr(K) = min{tr(P )|A diagram obtained from a projection P represents K}.

Then we call tr(K) the trivializing number of K. We see from Theorem 1 that
tr(K) is even for any knot K. Henrich-etc. provide a table of trivializing numbers



for knots with up to 10 crossings. However, we do not know the trivializing
number for all knots with up to 10 crossings. The following proposition holds.

Proposition 7 [3, 4] Let K be a knot. Then u(K) ≤ tr(K)

2
holds where u(K)

is the unknotting number of K.

Proof. It follows from the definition of the trivializing number and a fact
that a mirror diagram of a trivial knot is also trivial. ¤

Similarly, it is known in [4] that the following relation between the genus and
the trivializing number holds.

Theorem 8 [4] Let K be a knot. Then g(K) ≤ tr(K)

2
holds where g(K) is the

genus of K.

Proposition 9 For any non-negative integer n, there exists an alternating knot

K such that
tr(K)

2
− u(K) = n.

Proof. Let D0 be the diagram as illustrated in Fig. 9. In the case n = 0, let D′
0

be the alternating diagram obtained from D0 by crossing change at the crossing
framed by a dash circle in Fig. 9. Let K0 be the knot represented by D′

0. Since K0

is an alternating knot and it is known in [5, 1] that an orientable surface obtained
by Seifert algorithm in an alternating diagram realizes the minimal genus, we get
g(K0) = 1. We see from Theorem 8 and a chord diagram of D0 that tr(K0) = 2.

It is obvious that u(K0) = 1. Therefore,
tr(K0)

2
− u(K0) = 0.

In the case n ≥ 1, let Dn be the almost alternating diagram obtained from
D0 by replacing around the crossing framed by a dash circle in Fig. 9 by (b) as
illustrated in Fig. 9 n times. Then, let D′

n be the alternating diagram obtained
from Dn by crossing change at the crossing framed by a dash circle. Let Kn

be the knot represented by D′
n. Similarly, we see that tr(Kn) = 2(n + 1) and

u(Kn) = 1. Therefore,
tr(Kn)

2
− u(Kn) = n. ¤
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Figure 9:

We have the following theorems from the theorems for projections.



Theorem 10 Let K be a knot. Then tr(K) = 2 if and only if K is a twist knot.

This follows from Theorem 5. Then we have the following from Theorem 6.

Theorem 11 Let K be a nontrivial knot. Then tr(K) ≤ c(K) − 1 where c(K)
is the crossing number of K. The equality holds if and only if K is a (2, p)-torus
knot where p is some odd number more than one.

We have the inequality between the trivializing number and the unknotting
number by Proposition 7, then we get knots which hold the equality.

Proposition 12 Let K be a positive knot with c(K) ≤ 10. Then tr(K) = 2u(K).
Moreover, let P be the projection of a positive diagram of K, then tr(P ) = tr(K).

Theorem 13 Let K be a positive braid knot. Then tr(K) = 2u(K).

We introduce the theorem and the proposition to estimate the unknotting
number.

Theorem 14 [6, 7] Let D be a positive diagram and K the knot represented by
D. Then 2g4(K) = 2g(K) = c(D)−O(D) + 1 holds where c(D) is the number of
the crossings, O(D) is the number of the Seifert circles and g4(K) is the minimum
genus of a surface locally flatly embedded in the 4-ball with boundary K.

We note that s(K) = c(D) − O(D) + 1 for a positive knot K and a positive
diagram D of K where s(K) is the Rasmussen invariant.

Proposition 15 Let K be a knot. Then u(K) ≥ g4(K).

Proof of Theorem 13. Let D be a positive braid diagram of K. Let P be
the projection of D. By Propositions 7 and 15 and Theorem 14,

tr(P ) ≥ tr(K) ≥ 2u(K) ≥ 2g4(K) = c(D) − O(D) + 1.

Then, we see that tr(P ) = c(D) − O(D) + 1. Therefore, tr(K) = 2u(K). ¤

We have the following question.

Question 3 Does there exist a positive knot K with tr(K) 6= 2u(K)?
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