On strongly almost trivial spatial graphs

早稲田大学大学院 教育学研究科

花木 良

1.1 Definitions

G: finite graph

f is a spatial embedding of G

$$\overset{def.}{\Longleftrightarrow} f: G \to R^3: \text{ embedding}$$

We call f (G) a spatial graph

```
f, f': spatial embeddings of G
f and f' are equivalent (f \sim f')
```

$$\stackrel{def.}{\Leftrightarrow}$$
 ∃ $h: R^3 \to R^3$: orientation preserving self-homeomorphism s.t. $h \circ f = f'$

1.1 Definitions

f is trivial

$$\stackrel{def.}{\Leftrightarrow} \exists f' \sim f$$
s.t. $f'(G) \subset R^2 \times \{0\} \subset R^3$

G is planar

$$\stackrel{def.}{\Leftrightarrow} \exists f: G \rightarrow R^2: \text{ embedding}$$

Hence

G has trivial spatial embeddings \iff G is planar

1.2 Definitions

 $\varphi: G \to \mathbb{R}^2$: continuous map φ is a projection of G

def. multiple points of φ are

only finitely many transversal double points of edges

We call the image of a projection a regular projection

and denote it by $\hat{G} = \varphi(G)$

1.2 Definitions

 $\varphi: G \to \mathbb{R}^2$: continuous map φ is a projection of G

def. multiple points of φ are

only finitely many transversal double points of edges

We call the image of a projection a regular projection

and denote it by $\hat{G} = \varphi(G)$

A double point of a regular projection is called a crossing

In particular, a crossing point c is a self-crossing def. $\Leftrightarrow \varphi^{-1}(c) \subseteq e$, where e is an edge of G

1.2 Definitions

φ is a projection of a spatial embedding f

def. $\exists f' \sim f \text{ s.t. } \varphi = \pi \circ f'$ where $\pi: R^3 \to R^2$ is a natural projection

We say f is obtained from φ

projection φ is trivial

def. only trivial spatial embeddings are obtained from φ

1.3 Definitions

G: planar graph

f : spatial embedding of G

f is almost trivial.

 $\overset{def.}{\Leftrightarrow} \forall H \subsetneq G$: proper subgraph, $f|_H$ is trivial

1.3 Definitions

G: planar graph

f : spatial embedding of G

f is minimally knotted.

def. f is nontrivial.

 $\forall H \subsetneq G$: proper subgraph, $f|_H$ is trivial

ex.

Brunnian link

1.3 Definitions

G: planar graph, f: spatial embedding of G f is strongly almost trivial (SAT).

 $def. \ f$ is nontrivial, $\exists \hat{f}$: projection of f \Leftrightarrow s.t. $\forall H \subsetneq G$: proper subgraph, $f|_{H}$ is trivial We call \hat{f} SAT projection.

Hence, f is a SAT embedding of $G \Rightarrow f$ is minimally knotted ex. θ -curve has strongly almost trivial embeddings.


```
\varphi: projection of G \varphi is identifiable.
```

 $\overset{def.}{\Leftrightarrow} \overset{\forall f, f'}{\vdash} : \text{ spatial embeddings from } \varphi$ $f \sim f'$

We call φ IP.

ex.

 φ : projection of G φ is almost identifiable.

 $\overset{def.}{\Leftrightarrow}$ $\forall H \subsetneq G$: proper subgraph, $\varphi|_H$ is identifiable We call φ AIP.

Hence, φ of G is identifiable. $\Rightarrow \varphi$ is almost identifiable.

 φ of G is a SAT projection. $\Rightarrow \varphi$ is almost identifiable.

ex.

Proposition 1 [Huh-Taniyama, 2002]

Only planar graphs have identifiable projections.

Theorem 2 [Nikkuni, 2005]

 φ : projection of G

 φ is identifiable

 $\Leftrightarrow f : \text{ spatial embedding obtained from } \varphi,$ f : strivial

Theorem 3 [Nikkuni, 2005]

G: planar graph which does not have a SAT embedding

 φ : projection of G

 φ is IP. $\Leftrightarrow \varphi$ is AIP.

SAT埋め込みをもたないグラフのIPの判定は, 真部分グラフのIPを見ればよい

Question 1
What kind of planar graphs have minimally knotted spatial embeddings?

Ans. Every planar graph without vertices of degrees ≤ 1 ([Kawauchi, 1989], [Wu, 1993]).

Question 2

What kind of planar graphs have SAT embeddings?

Partial Ans.

[∃]G: planar graph which has a SAT embedding

[∃]G: planar graph which does not have a SAT embedding However it is not well known.

ex. θ_n -curve has SAT embeddings

ex. Handcuff graph has SAT embeddings.

Theorem 4 [Huh-Oh, 2003]

G: connected planar graph which does not have a cut vertex G satisfies the followings

- (1) G has no multiple edges.
- (2) $\forall e_1, e_2 \in E(G)$ s.t. $e_1 \cap e_2 = \emptyset$, $\exists C_1, C_2$: disjoint cycles s.t. $e_1 \in E(C_1)$, $e_2 \in E(C_2)$

$$e_1$$
 C_1 e_2 C_2

(3) $\forall e_1, e_2, e_3 \in E(G)$ s.t. $e_1 \cup e_2 \cup e_3$ is homeo. to a path, $\exists C$: cycle s.t. $e_1, e_2, e_3 \in E(C)$ $e_2 \cap C$

 \Rightarrow G has no strongly almost trivial embeddings.

ex. graphs which does not have a SAT embedding

P₅ satisfies all assumptions of Thm.4

*K*₄ does not satisfy the assumption (2) of Thm. 4, but it does not have a SAT embedding [Huh-Oh, 2002]

Double-handcuff graph does not satisfy the assumptions (1) and (2), but it does not have a SAT embedding [Hanaki, preprint]

Question 3 Does $G=S_1^1 \perp S_2^1 \perp \cdots \perp S_n^1$ have SAT embeddings?

Ans. It has SAT embeddings if n = 1,2It has no SAT embeddings if $n \ge 3$

ex.

3.1 わかったこと

Main Theorem 1 [Hanaki]

n-bouquet has SAT embeddings.

F: forest

G_F: graph obtained from *F*

Main Theorem 2 [Hanaki]

If $E(F) \neq \emptyset$, G_F has SAT embeddings.

cord presentation

SATの構成方法

3.3 わかったこと3

Main Theorem 3 [Hanaki]

G: conn. graph s.t. G is not homeo. to handcuff graph $\exists e \in E(G)$ s.t. e is a cut edge

 H_1 , H_2 : conn. comp. of G-e

 H_1 , H_2 has no cut edges and has cycles

 \Rightarrow G has no SAT embeddings

Edge deletion (G-e) is the process of removing only an edge.

Edge contraction (G/e) is the process of removing an edge and combining its two endvertices into a single vertex where e is not loop

H is a minor of G ($H <_m G$)

def. H can be obtained from G by contracting edges, deleting edges, and deleting isolated vertices

A property \mathcal{P} of a graph is inherited by minors

 $\overset{def.}{\Leftrightarrow}$ If G has \mathcal{P} , $\forall H <_m G$, H has \mathcal{P}

Robertson-Seymour's Minor Theorem

G has \mathcal{P}

 \Leftrightarrow G does not contain G_1, G_2, \cdots and G_n as a minor

finite

ex. Kuratowski Theorem

G is planar

 \Leftrightarrow G does not contain K_5 , $K_{3,3}$ as a minor

Remark

A property that a graph has (no) SAT embeddings is not inherited by minors.

 $G \subset S^3$ is irreducible

 $G \subset S^3$: spatial graph

 $D \subset S^3$: disk

D is good for G

def. $\partial D \subseteq G$

 $intD \cap G$ contains at most finitely many points

 $x \in \text{int}D \cap G$,

a neightbourhood of x looks like

where $p, q \in N$

Theorem [Taniyama, 2002]

 $G \subset S^3$: spatial graph

 $D \subset S^3$: disk s.t. D is good for G

int $D \cap G = \emptyset$ or $\partial D \cap \operatorname{cl}(G - \partial D)$ is not singleton where cl denotes the closure

 $G' \subset S^3$: spatial graph obtained from G by contracting D to a point

G' is irreducible \Rightarrow G is irreducible

ex.

ex.

