On strongly almost trivial spatial graphs
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1.1 Definitions

G :finite graph

f is a spatial embedding of G

def. :
& F:G— R3: embedding

We call f (G) a spatial graph

f, f':spatial embeddings of G
fand f "are equivalent (f ~ ")

def.
éf; Th:R® — RS:orientation preserving self-homeomorphism

st.hof=f"'
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1.1 Definitions

 —————————————————————————————————————————————————————————————————
f is trivial

L~ f
s.t. f(G) CR2x {0} CR?

G is planar
def.
& 3f:G — R?: embedding

Hence

G has trivial spatial embeddings < Gis planar




1.2 Definitions

@ : G — R?: continuous map
@ is a projection of G

def. multiple points of ¢ are
only finitely many transversal double points of edges

We call the image of a projection a regular projection
A
and denote it by G = ¢(G)




1.2 Definitions

@ : G — R?: continuous map
@ is a projection of G

def. multiple points of ¢ are
only finitely many transversal double points of edges

We call the image of a projection a regular projection
A
and denote it by G = ¢(G)

A double point of a regular projection G
IS called a crossing

In particular,
a crossing point c is a self-crossing

def. _
& ¢~ (c)Ce, where e is an edge of G
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1.2 Definitions

@ is a projection of a spatial embedding f
def. 3f'~ fst. o=mof’

< where 1m: R® — R? is a natural projection R

We say f is obtained from ¢ f V l T
G > R?

projection ¢ is trivial @

def. only trivial spatial embeddings
are obtained from ¢

Q @ :trivial
>
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1.3 Definitions

G : planar graph
f : spatial embedding of G
f is almost trivial.

def. o
& YHCG : proper subgraph, f|uis trivial




1.3 Definitions

G : planar graph
f : spatial embedding of G
f is minimally knotted.

def. f is nontrivial.
< VH < G : proper subgraph, f|uis trivial

Brunnian link
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1.3 Definitions

G : planar graph, f : spatial embedding of G
f is strongly almost trivial (SAT).

def. T is nontrivial, 3f projection of f
& s.t. YVH S G : proper subgraph, f|H is trivial

We call f SAT projection.
Hence, f is a SAT embedding of G = f is minimally knotted

ex 6 -curve has strongly almost trivial embeddings.

& P T
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2.1 SATICBHET S5

@ : projection of G
@ is identifiable.

Cg vf, f' : spatial embeddings from ¢
f~fF'
We call ¢ IP.

eXx.




2.1 SATICEET HC &

@ : projection of G
@ is almost identifiable.

def.
(i]; VH < G : proper subgraph, ¢|~ is identifiable

We call ¢ AIP.
Hence, ¢ of G is identifiable. = ¢ is almost identifiable.

@ of G is a SAT projection. = ¢ is almost identifiable.
ex.




2.1 SATICEET HC &

Proposition 1 [Huh-Taniyama, 2002]

Only planar graphs have identifiable projections.

Theorem 2 [Nikkuni, 2005]
@ : projection of G
@ is identifiable

Vf . spatial embedding obtained from ¢,
f is trivial




2.1 SATICEET HC &

Theorem 3 [Nikkuni, 2005]

G : planar graph which does not have a SAT embedding
@ : projection of G

pislP. & ¢@is AlP.

SATIEHAAZEHT-TEWNVISTDIPOHIFE L,
BHIRNTS57DIPERNIE LKL




2.2 HIbnNTWVHC &

Question 1
What kind of planar graphs have
minimally knotted spatial embeddings ?

Ans. Every planar graph without vertices of degrees = 1
([Kawauchi, 1989], [Wu, 1993]).




2.2 HIbnNTWVHC &

Question 2
What kind of planar graphs have SAT embeddings ?

Partial Ans.
3G : planar graph which has a SAT embedding
3G : planar graph which does not have a SAT embedding

However it is not well known.
ex. ©6h-curve has SAT embeddings




2.2 HIbnNTWVHC &

eXx.

Handcuff graph has SAT embeddings.

O—0O =

.
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2.2 HIbnNTWVHC &

Theorem 4 [Huh-Oh, 2003]
G : connected planar graph which does not have a cut vertex
G satisfies the followings
(1) G has no multiple edges. O
(2) Ve, 2€E(G) st.etNex=0,
3C4, C, : disjoint cycles s.t. e1€E(C1), e2€ E(C»)

(o) oi(c)

(3) Ve1, e2, e3€E(G) s.t. e1Ue2Ue3 is homeo. to a path,

3C : cycle s.t. e1, e2, e3€E(C) 61@
€2
€3

= G has no strongly almost trivial embeddings.
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2.2 AIibNTWVHC &

ex. graphs which does not have a SAT embedding

Ps satisfies all assumptions of Thm.4

Ks does not satisfy the assumption (2) of Thm. 4,
but it does not have a SAT embedding

[Huh-Oh, 2002]

Double-handcuff graph does not satisfy the

Q Q assumptions (1) and (2),

but it does not have a SAT embedding
[Hanaki, preprint]
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2.2 HIbnNTWVHC &

Question 3
Does G=S"/ 1S, 1---11 S, have SAT embeddings ?

Ans. It has SAT embeddings if n = 1,2
It has no SAT embeddings ifn = 3




3.1 Hhvof=C¢&

Main Theorem 1 [Hanaki]
n-bouquet has SAT embeddings.




3.2 hh-of=CL?2

GF : graph obtained from F

>R, oo
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3.2 hh-of=CL?2

Main Theorem 2 [Hanaki]
If E(F) # 8 , Grhas SAT embeddings.

O—0O0 O O O

(riila
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3.2 hh-of=CL?2

cord presentation
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3.2 Hhh-of-Cc&2
SATDOFERE X

10

11
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3.2 hh-of=CL?2

.
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3.3 HhHh-of=C&3

Main Theorem 3 [Hanaki]

G : conn. graph s.t. G is not homeo. to handcuff graph
Flee E(G) s.t. e is a cut edge
H1, H> : conn. comp. of G—e
H1, H> has no cut edges and has cycles
— G has no SAT embeddings




4.1 574 F—IZDU\T

Edge deletion(G—e)is
the process of removing only an edge.

Edge contraction(G/e)is the process of removing an edge
and combining its two endvertices into a single vertex

where e is not loop

Ka Ks— Ki/ e

p—
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4.1 574 F—IZDU\T

H is a minor of G (H<»G)

def. H can be obtained from G by contracting edges,
deleting edges, and deleting isolated vertices

A property 2 of a graph is inherited by minors

def.
&S If Ghas P, YH<S G, Hhas P

Robertson-Seymour's Minor Theorem
G has ¢
< G does not contain @, Go, -+ and G/nas a minor

—

finite
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4.1 574 F—IZDU\T

eX. Kuratowski Theorem
G is planar
< G does not contain Ks, Kz 3 as a minor




4.1 574 F—IZDU\T

Remark
A property that a graph has (no) SAT embeddings

IS not inherited by minors.




4.2 GFEBAD— 8D R ryF

GC S8 is irreducible

(g 31SC S8 2-sphere s.t. G intersects both comp. of S°—S
and | GN S| =1

G C S3 : spatial graph
D C 8°: disk
D is good for G

def. 0D C G
< intD N G contains at most finitely many points

X € intD N G,

D
a neightbourhood of x looks like | ,_,/ |
where p, g € N PAT RN
| ~

Q
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4.2 FEBRD—EBD R 7yF
Theorem [Taniyama, 2002]
G C S8 : spatial graph D

D C $8 : disk s.t. D is good for G ©<G

intD N G=0 or dD N cl(G — aD) is not singleton
where cl denotes the closure

G' C S° : spatial graph obtained from G
by contracting D to a point

G' isirreducible = G isirreducible




4.2 GFEBAD— 8D R ryF

e - ¢




4.2 GFEBAD— 8D R ryF

Sphvia

ex.
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