Pseudo diagrams of knots, links and spatial graphs

Graduate School of Education

Waseda University

Ryo HANAKI

G: finite graph

f is a spatial embedding of G

$$\overset{def.}{\Leftrightarrow} f: G \to \mathbf{S}^3 : \text{ embedding}$$

We call f(G) a spatial graph. In particular, f (G) is called a knot if G is homeomorphic to a circle and a link if G is homeomorphic to disjoint circles.

```
G, G': spatial graphs of G
\mathcal{G} and \mathcal{G}' are equivalent (\mathcal{G} \sim \mathcal{G}')
```

 $\stackrel{\textit{def.}}{\Leftrightarrow} \exists h: S^3 \to S^3: \text{ orientation preserving self-homeomorphism}$ s.t. h(G) = G'

G is trivial (or unknotted)

$$\stackrel{def.}{\Leftrightarrow} \exists \mathcal{G'} \sim \mathcal{G} \text{ s.t. } \mathcal{G'} \subset \mathbb{S}^2 \subset \mathbb{S}^3$$

G is planar

```
\overset{def.}{\Leftrightarrow} \exists f: G \to \mathbb{S}^2 : \text{ embedding}
```

Hence

G has a trivial spatial graph. \Leftrightarrow G is planar.

We consider only planar graphs.

 $\varphi: G \to \mathbf{S}^2$: continuous map φ is a projection of G

 $\stackrel{def.}{\leftrightarrow}$ multiple points of φ are only finitely many transversal double points away from the vertices

The image of a projection is also called a projection

and we denote it by $P = \varphi(G)$

A diagram *D* is a projection *P* with over/under information at each double point. Then we say *D* is obtained from *P*.

A diagram *D* uniquely represents a spatial graph up to equivalence.

Then a double point with over/under information is called a crossing and a double point without over/under information is called a pre-crossing.

Thus a diagram has crossings and has no pre-crossings.

2.1 Motivation

Q. Can we determine from a projection P whether the original spatial graph \mathcal{G} is trivial or knotted?

Ans. We cannot determine except some special cases.

ex.

Two diagrams representing a nontrivial knot and six diagrams representing a trivial knot are obtained from *P*.

Therefore we cannot determine.

2.1 Motivation

Q. Which pre-crossings of a projection *P* and which over/under informations at them should we know in order to determine that the original spatial graph *G* is trivial or knotted?

Now we introduce the notion of a pseudo diagram.

A pseudo diagram Q is a projection P with over/under information at some pre-crossings. Then we say Q is obtained from P.

Thus a pseudo diagram *Q* has crossings and pre-crossings. Here *Q* possibly has no crossings or has no pre-crossings. Namely, *Q* is possibly a projection or a diagram.

A pseudo diagram Q' is obtained from a pseudo diagram Q.

 $\stackrel{def.}{\leftrightarrow}$ Each crossing of Q has the same over/under information as Q'.

pseudo diagram Q is trivial.

 $\stackrel{\textit{def.}}{\longleftrightarrow} \forall D$: diagram obtained from Q D represents a trivial spatial graph.

Q: trivial pseudo diagram

pseudo digaram Q is knotted.

 $\stackrel{\textit{def.}}{\longleftrightarrow} \forall D$: diagram obtained from Q $\stackrel{D}{\longleftrightarrow} D$ represents a nontrivial spatial graph.

ex.

Q: knotted pseudo diagram

There exists a pseudo diagram which is neither trivial nor knotted.

P: projection

$$tr(P)$$
:=min $\left\{ c(Q) \mid Q : trivial pseudo diagram obtained from $P \right\}$$

where c(Q): the cardinality of the set of crossings of Q

We call tr(P) the trivializing number of P.

$$tr\left(\begin{array}{c} \\ \\ \end{array}\right) = 2 \qquad tr\left(\begin{array}{c} \\ \end{array}\right)$$

$$tr\left(\begin{array}{c} \\ \\ \end{array}\right) = 4$$

P: projection

$$kn(P):=\min \left\{ c(Q) \middle| \begin{array}{c} Q: \text{ knotted pseudo diagram} \\ \text{obtained from } P \end{array} \right\}$$

We call kn(P) the knotting number of P.

$$kn\left(\begin{array}{c} \\ \\ \\ \end{array} \right) = 3 \qquad kn\left(\begin{array}{c} \\ \\ \\ \end{array} \right) = 4$$

2.4 Remarks

 $\forall G$: planar graph

 $\exists P$: projection of G with $kn(P) = \infty$ i.e. tr(P) = 0

ex. $\varphi: G \to \mathbb{S}^2$: embedding $P = \varphi(G)$

2.4 Remarks

∃ G : planar graph

 $\exists P$: projection of G with $tr(P) = \infty$ i.e. kn(P) = 0

ex. [Taniyama, 1995]

Any diagram obtained from *P* contains a diagram of a Hopf link.

3.1 Proposition

P: projection of $G=\mathbb{S}^1$ $C \subset \mathbb{S}^2$ is a decomposing circle of P

 $\overset{def.}{\Leftrightarrow} P \cap C = \{ \text{ two transversal double points } \}$

Here we put $\{p_1, p_2\} = P \cap C$

 B_1, B_2 : disks s.t. $B_1 \cup B_2 = S^2, B_1 \cap B_2 = C$

I: arc on C joining p_1 and p_2

 $P_1 = (P \cap B_1) \cup I, P_2 = (P \cap B_2) \cup I$

$$tr(P) = tr(P_1) + tr(P_2)$$

 $kn(P) = \min \{ kn(P_1), kn(P_2) \}$

3.2 Trivializing number

Theorem 1

P: projection of $S^1 \Rightarrow tr(P)$ is always even.

Proposition 2

 $\forall n$: even positive number

 $\exists P$: projection of S^1 with tr(P) = n

3.2 Trivializing number

Corollary 1

P: projection of $S^1 \coprod S^1 \coprod \cdots \coprod S^1 \Rightarrow tr(P)$ is always even.

Proposition 3

G: planar graph

 $\Rightarrow tr(P) \neq 1$

P : projection of G

Remark

$$G = \bigcirc$$

 $\exists P : \text{projection of } G \text{ with } tr(P) = 3$

Q : pseudo diagram of S^1 with n pre-crossings

CDQ is a chord diagram of Q

 CD_Q is a circle with n chords s.t. the preimage of each pre-crossing is connected by a chord

Lemma 1

Q : pseudo diagram s.t. $CD_{\mathbb{Q}}$ contains

⇒ Q is not trivial.

Proof

Q': a pseudo diagram obtained from Q with $CD_{Q'}$ =

 K_1 : the knot represented by D++ where ++ means that c_1 is + and c_2 is +

 K_2 : the knot represented by D+-

 K_3 : the knot represented by D-+

 K_4 : the knot represented by D--

$$a_2(K_1)-a_2(K_2)-a_2(K_3)+a_2(K_4)=1$$

A diagram representing a nontrivial knot is obtained from Q.

Lemma 2

P: projection of S¹

CD: sub-chord diagram of CD_P

s.t. *CD* does not contain

⇒ $\exists Q$: trivial pseudo diagram obtained from P with $CD_Q = CD$

P: projection of S¹

By using Lemma 1 and 2, we can get the trivializing number of P from CD_P .

$$tr(P)=4$$

3.4 Theorems on Trivializing number

Theorem 2

P: projection of S¹

$$tr(P)=2$$

 \Leftrightarrow P is obtained from

by a series of replacing a sub-arc of P as

Here CD_P is

if m is odd

if *m* is even

3.4 Theorems on Trivializing number

Theorem 3

P: projection of S¹

 $\Rightarrow tr(P) \leq p(P) - 1$

where p(P): the cardinality of the set of pre-crossings of P

The equality holds

 \Leftrightarrow *P* is one of

Here CD_P is

3.5 Knotting number

Proposition 4

 $\not\exists P$: projection of S^1 with kn(P) = 1, 2

 $\forall n > 2$: positive number

 $\exists P$: projection of \mathbb{S}^1 with kn(P)=n

3.5 Knotting number

Theorem 4

P: projection of $S^1 \coprod S^1 \coprod \cdots \coprod S^1$ with kn(P) = p(P)

where p(P): the cardinality of the set of pre-crossings of P

3.6 Trivializing number and Knotting number

Proposition 5

 $\forall m$: even positive number, $\forall n$: positive number

 $\exists P$: projection of \mathbb{S}^1 with tr(P) = m and kn(P) = n

where
$$l = \left\lfloor \frac{n}{2} \right\rfloor + 3$$
 $\frac{m}{2}$

4.1 Application

P: projection of a graph
How many diagrams obtained from P represent
trivial spatial graphs (resp. nontrivial spatial graphs)?

```
n_{\text{tri}}(P) := \#\{D \mid D : \text{ diagram obtained from } P \text{ s.t.}
D \text{ represents a trivial spatial graph}\}
n_{\text{nontri}}(P) := \#\{D \mid D : \text{ diagram obtained from } P \text{ s.t.}
D \text{ represents a nontrivial spatial graph}\}
```

Proposition 6

$$tr(P) \neq 0$$
 $\Rightarrow n_{tri}(P) \ge 2^{p(P) - tr(P) + 1}$
 $kn(P) \neq 0$ $\Rightarrow n_{nontri}(P) \ge 2^{p(P) - kn(P) + 1}$

