
An elementary set

for double-handcuff graph projections

早稲田大学大学院 教育学研究科

花木 良

1.1 Definitions

G: finite graph

```
f is a spatial embedding of G
```

```
\overset{def.}{\Longleftrightarrow} f: G \to R^3: embedding
```

We call f(G) a spatial graph

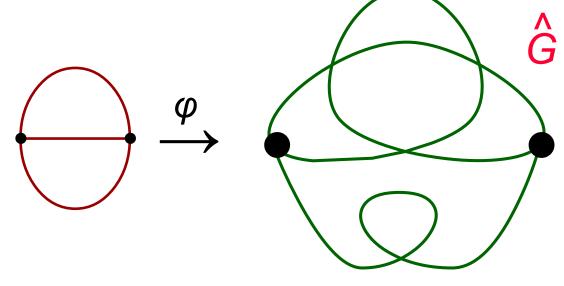
```
f, f': spatial embeddings of G
f and f' are equivalent (f \sim f')
def. \quad ^{\exists}h:R^{3} \rightarrow R^{3}: (possibly orientation reversing)
\Leftrightarrow \quad self-homeomorphism
s.t. <math>h(f(G))=f'(G)
```


1.1 Definitions

f is trivial

$$\stackrel{def.}{\Leftrightarrow} \operatorname{s.t.} f'(G) \subset R^2 \times \{0\} \subset R^3$$

1.2 Definitions


 $\varphi: G \to \mathbb{R}^2$: continuous map φ is a projection of G

def. multiple points of φ are

only finitely many transversal double points of edges

We call the image of a projection a regular projection

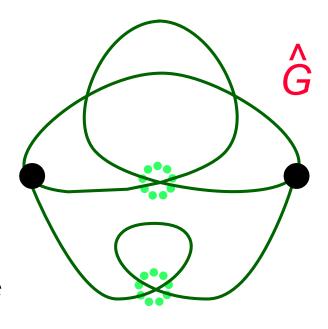
and denote it by $\hat{G} = \varphi(G)$

1.2 Definitions

 $\varphi: G \to \mathbb{R}^2$: continuous map φ is a projection of G

def. multiple points of φ are

only finitely many transversal double points of edges


We call the image of a projection a regular projection

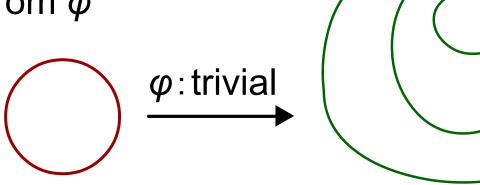
and denote it by $\hat{G} = \varphi(G)$

A double point of a regular projection is called a crossing

In particular, a crossing point *c* is a self-crossing *def*.

 $\stackrel{aej.}{\Leftrightarrow} \varphi^{-1}(c) \subseteq e$, where e is an edge of G

1.2 Definitions


φ is a projection of an embedding f

def. $\exists f' \sim f \text{ s.t. } \varphi = \pi \circ f'$ ⇔ where $\pi: R^3 \to R^2$ is a natural projection

We say f is obtained from φ

projection φ is trivial

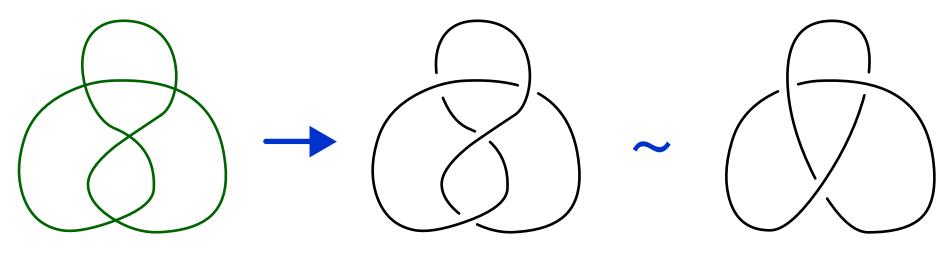
def. only trivial embeddings are obtained from φ

1.3 Definitions

```
\mathcal{E}: a set of nontrivial embeddings of G
\mathcal{E} is an elementary set of G
def: \quad \mathcal{E} \text{ satisfies the following;} \\ \Leftrightarrow \quad \forall \varphi: \text{ nontrivial projection of } G
\varphi \text{ is a projection of at least one element of } \mathcal{E} 
and \forall \mathcal{F} \subseteq \mathcal{E} \text{ does not satisfy (*)}
```

 $elm(G) := min\{\#\mathcal{E} \mid \mathcal{E} \text{ is an elementary set of } G \}$ We call elm(G) the elementary number of G.

2.1 Example 1 (S¹)


[Taniyama 1989]

φ

$$G = S^{1}$$

$$\varepsilon = \{$$

and elm(G) = 1

f: spatial embedding obtained from φ

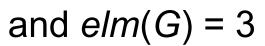
2.2 Example 2 (S¹∐S¹)

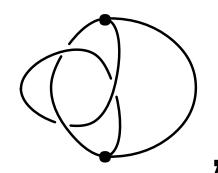
[Taniyama 1989]
$$G = \mathbf{S}^1 \coprod \mathbf{S}^1$$

$$\varepsilon = \{ \bigcirc, \bigcirc \}$$

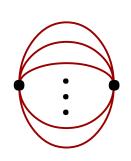
and
$$elm(G) = 2$$

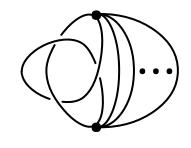
2.3 Example 3-1 (*θ*-curve)

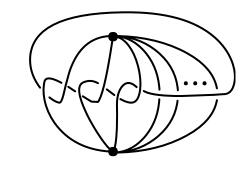

[Kinoshita-Mikasa 1993], [Huh-Jin-Oh 2002]

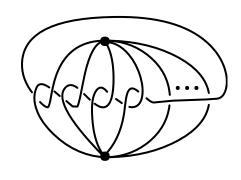

 $G: \theta$ -curve

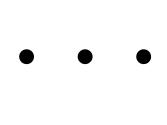
$$\varepsilon = \{$$

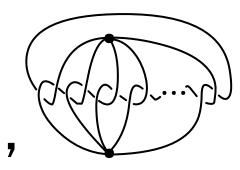



2.4 Example 3-2 (θ_n -curve)

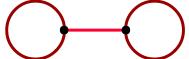

[Huh-Jin-Oh 2002]

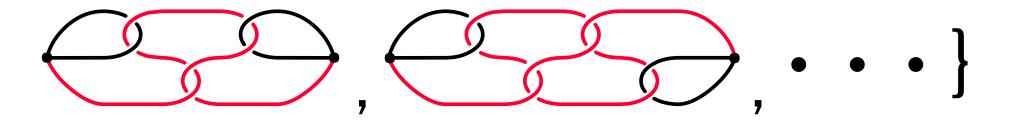

 $G: \theta_n$ -curve




$$\varepsilon = \{$$

and elm(G) = n



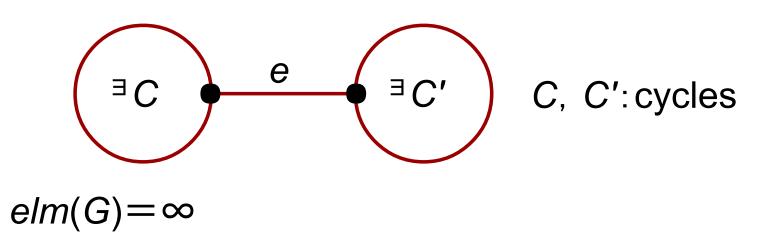

2.5 Example 4-1 (handcuff graph)

[Taniyama-Yoshioka 1998]

G: handcuff graph ()

$$\varepsilon = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc$$

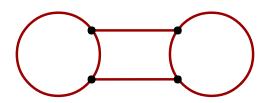
and $elm(G) = \infty$



2.6 Example 4-2

[Taniyama-Yoshioka 1998]

G: connected planar graph with a cut edge e s.t. each component of G—int e contains cycles



3.1 Main Theorem

Theorem 1 [Hanaki]

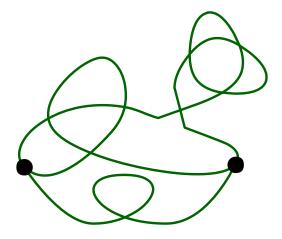
H: double-handcuff graph

$$\varepsilon = \{ \bigcup_{E_1}, \bigcup_{E_2}, \bigcup_{E_3}, \bigcup_{E_4}, \bigcup_{E_4}, \bigcup_{E_5}, \bigcup_{E_6}, \bigcup_{E_7} \}$$

and elm(H) = 7

3.2 Preparations

c: crossing, P: regular projection


c of P is nugatory

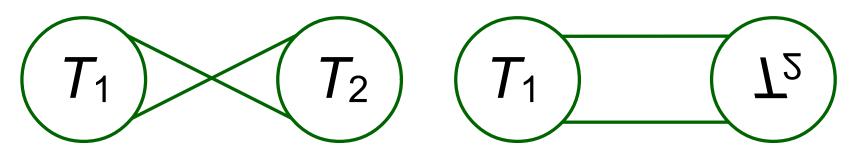
def.
$$\omega(P-c) > \omega(P)$$

 $\stackrel{\textit{def.}}{\Leftrightarrow} \omega(P-c) > \omega(P)$ where ω is the number of connected components

P is reduced

P has no nugatory crossing

3.2 Preparations


Proposition 1

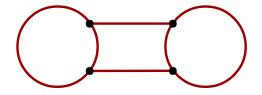
∀P: regular projection with nugatory crossings

 $\exists P'$: reduced regular projection s.t. EMB(P') = EMB(P)

where EMB(P) is the set of all embeddings obtained from P

Proof

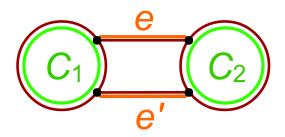
We can assume that a regular projection *P* is a reduced regular projection.

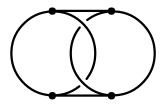


3.3 Outline of Proof

H: double-handcuff graph

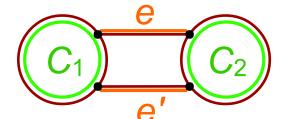
By applying Lemmas 1, 2, 3, 4, $\forall \varphi$: nontrivial projection of H φ is a projection of at least one element of \mathcal{E} , that is, $elm(H) \leq 7$.

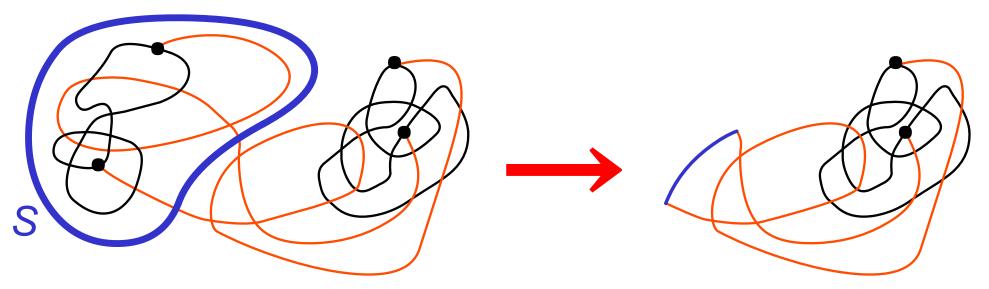

By applying Lemma 5, $elm(H) \ge 7$.



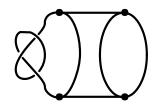
3.4 Lemma 1

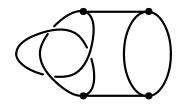
Lemma 1 $\varphi(C_1) \cap \varphi(C_2) \neq \emptyset$. $\Rightarrow \varphi$ is a projection of E_1 .



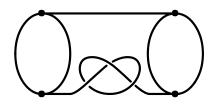

3.5 Lemma 2

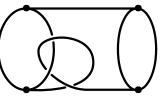
Lemma 2

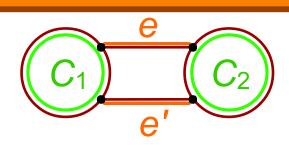

 $\exists S$: circle on \mathbb{R}^2 s.t.

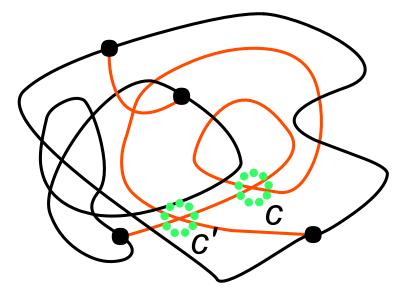


S meets $\varphi(e)$ and $\varphi(e')$ transversally at one point respectively

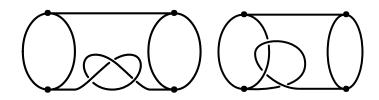



 $\Rightarrow \varphi$ is a projection of E_2 , E_3 , E_4 , E_5 or E_6 .



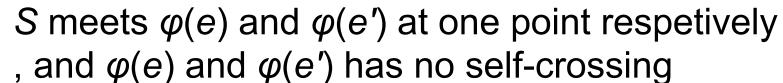


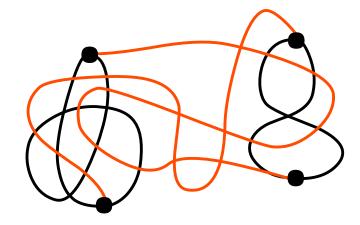
3.6 Lemma 3


Lemma 3 φ (e) or φ (e') has self-crossings.

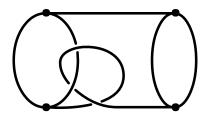
c, c': self-crossings

 $\Rightarrow \varphi$ is a projection of E_5 or E_6 .




3.7 Lemma 4

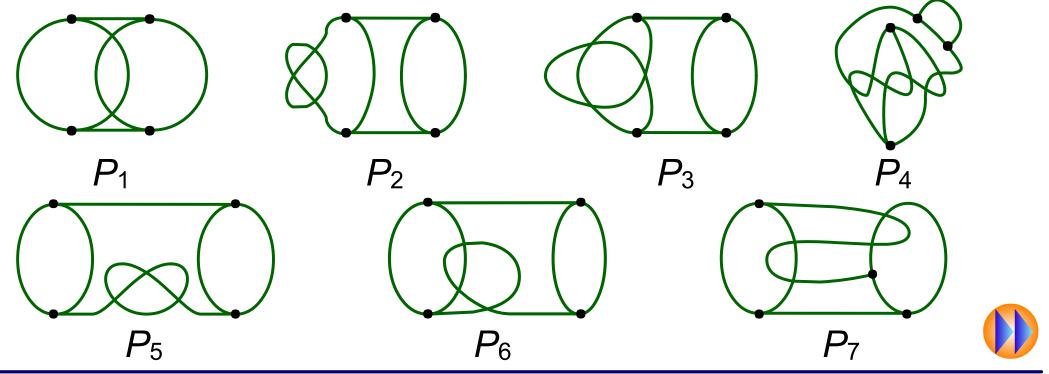
Lemma 4


$$\varphi\left(C_{1}\right)\cap\varphi\left(C_{2}\right)=\varnothing$$
 ,


 $\not\equiv S$: circle on R^2 s.t.

 $\Rightarrow \varphi$ is a projection of E_6 or E_7 .

3.8 **Lemma 5**

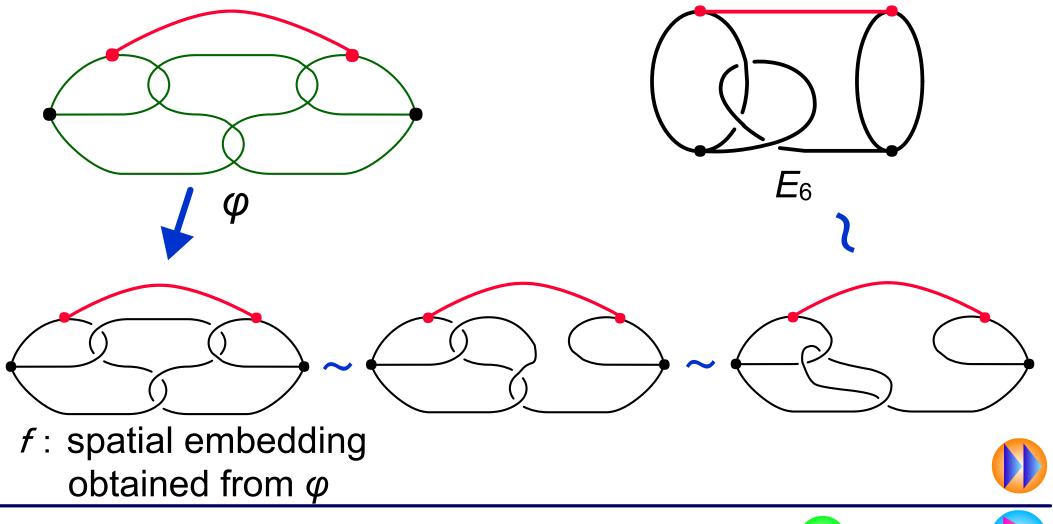

Lemma 5 $elm(H) \ge 7$.

Proof (sketch)

Let P_i be a regular projection (i=1, 2, ..., 7).

 $NE(P_i)$: the set of all nontrivial embeddings obtained from P_i

Then we show that $NE(P_i) \cap NE(P_j) = \emptyset$ $(i \neq j)$.

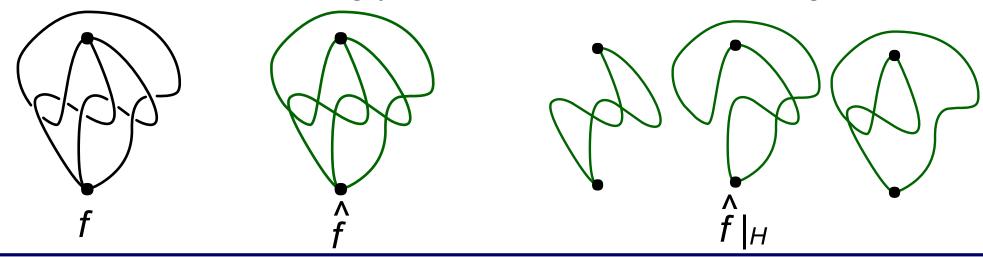


3.9 Why is elm(H) finite?

8

Though the elementary number of handcuff graph is infinite, the elementary number of double-handcuff graph is finite.

4.1 Remark (Preparations)


G: graph

f: nontrivial spatial embedding of G

f is strongly almost trivial.

```
\stackrel{def.}{\Leftrightarrow} \stackrel{\exists \hat{f}}{:} \text{ projection of } f
s.t. \forall H \subsetneq G : \text{ proper subgraph, } \hat{f}|_{H} \text{ is trivial}
```

Ex. θ -curve has strongly alomost trivial embeddings.

4.1 Remark (Preparations)

Theorem 2 [Huh-Oh, 2003]

G: planar graph s.t. $\forall v \in V(G)$, v is not a cut vertex $d(v) \ge 3$ where d(v) is the degree of v

G satisfies the followings

- (1) G has no multiple edge. '
- (2) $\forall e_1, e_2 \in E(G) \text{ s.t. } e_1 \cap e_2 = \emptyset,$ $\exists C_1, C_2 : \text{ disjoint cycles s.t. } e_1 \in E(C_1), e_2 \in E(C_2)$

$$e_1$$
 C_1 e_2 C_2

- (3) $\forall e_1, e_2, e_3 \in E(G)$ s.t. $e_1 \cup e_2 \cup e_3$ is homeo. to a path, $\exists C : \text{cycle s.t. } e_1, e_2, e_3 \in E(C)$
- \Rightarrow G has no strongly almost trivial embedding.

4.2 Remark

Double-handcuff graph H does not satisfy

- (1) G has no multiple edge.
- (2) $\forall e_1, e_2 \in E(G) \text{ s.t. } e_1 \cap e_2 = \emptyset,$ $\exists C_1, C_2 : \text{ disjoint cycles s.t. } e_1 \in E(C_1), e_2 \in E(C_2)$

in Theorem 2.

However, the following Corollary 1 holds.

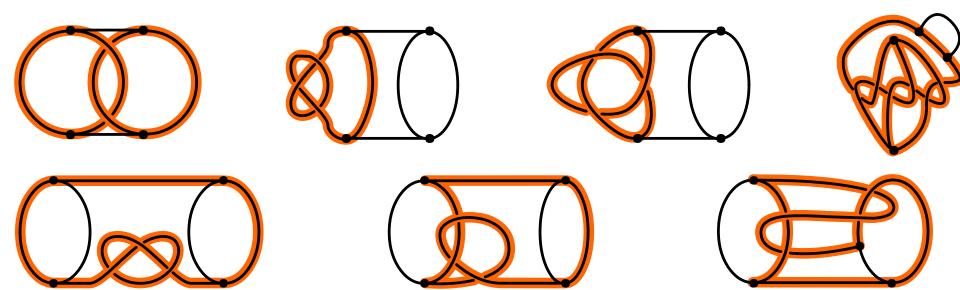
Corollary 1 [Hanaki]

H: double-handcuff graph

H has no strongly alomost trivial embedding.

4.2 Remark

Lemma 6


H: double-handcuff graph

 \mathcal{E} : the elementary set in Theorem 1

For each $f \in \mathcal{E}$, $\exists H' \subsetneq H$: proper subgraph of H

s.t. $f \mid H'$ is a nontrivial embedding

Proof

4.2 Remark

```
Corollary 1 [Hanaki]
  H: double-handcuff graph
  H has no strongly alomost trivial embedding.
Proof
f: nontrivial embedding of H
\forall \hat{f}: projection of f Here \hat{f} is nontrivial.
By Theorem 1, \exists g \in \mathcal{E} s.t. g is obtained from \hat{f}
By Lemma 6, \exists H' \subsetneq H: proper subgraph of H
                                  s.t. g \mid H' is a nontrivial embedding
Hence \hat{f}|H' is nontrivial.
```

