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Abstract— In this paper, we propose a novel common subex-
presson elimination (CSE) method to be used for VLSI design
of multiplierless finite impulse response (FIR) filter with a
small number of adders and registers. The proposed method
is an efficient way to reduce the function blocks using the
horizontal and vertical CSE. The FIR filters were synthesized
from Verilog HDL code. Area and critical path values were
evaluated for 0.35 µm standard CMOS library. Compared with
the previous CSE techniques, the presented approach can save
from a minimum of 0.8% up to a maximum 21.5% of gate area.
Also, the critical path of proposed method is an average of 3.2%
or 17.6% shorter than those of the other methods.

I. INTRODUCTION

In the VLSI implementation of a linear phase finite impulse
response (FIR) filter with fixed coefficients, multiplications
require very large silicon areas compared to additions and
subtractions. Since constant multiplications are replaced with
an additions/subtractions and shifts, we can reduce the silicon
area. The shifts also can be realized by using the hard-wired
shifters and hence they are essentially area-free.

The complexity of FIR filters is dominated by the number of
additions/subtractions used for coefficient multiplications. To
reduce the complexity of FIR filters, the coefficients can be
expressed in the canonic signed digit (CSD) form. The CSD
codes minimize the number of adders/subtracters required in
each coefficient multiplications.

The common subexpression elimination (CSE) methods [1]–
[7] have been proposed to make the multiplier block as
simple as possible. Recently, Jang et al. [5] and Vinod et
al. [6] proposed the methods of further reducing the number
of adders by using vertical CSE. However, these methods
do not consider the number of registers that result from the
use of the vertical CSE. The gate number ratio of adders to
registers is 1 : 0.6− 0.8; therefore, in the case of a filter with
many registers, we can not reduce the area of filter. On the
other hand, in a previous paper [7], we have reported on the
synthesis of multiplierless FIR filter which has a small number
of adders and registers, we however have evaluated only the
area of FIR filter.

In this paper, we propose a CSE method for designing the
high-speed and small-area FIR filter which has a small number
of adders and registers. In particular, our CSE method is aimed

at reducing the number of not only adders but also registers
in the multiplier block. This is achieved by finding the bit-
patterns with the minimum cost function in the coefficient
matrix. Finally, we compare the performance in terms of area
and critical path time through some examples.

II. PROBLEM DEFINITION

A common feature of many digital signal processing algo-
rithms is that they involve computations of the form

Yi = aijXi (i = 0, 1, · · · , N−1; j = 0, 1, · · · ,M−1), (1)

where Xi and Yi are input and output variable vectors,
respectively. Also, aij is a set of constant coefficients, N is the
number of coefficients and M is the word length. One typical
example is the transposed form FIR filter that one input data is
multiplied with the filter coefficients. In this paper, we perform
multiple multiplications in Equation (1) using registers and
additions/subtractions in order to reduce the area. Then the
problem of reducing the costs is stated as the problem of
minimizing the weighted sum of the numbers of the registers
and adders/subtracters which are needed to perform all of the
multiplications. That is, the objective cost function (CF ) to
be minimized is written as:

CF = βNreg + γNa−s, (2)

where Nreg and Na−s are the number of registers and adder-
s/subtracters, respectively, β(> 0) and γ(> 0) are weights.

The above problem is called the multiple constant multipli-
cation (MCM) problem. However, the MCM problem is very
complex so that it is believed to be NP-hard [8]. Therefore,
we have to find out an approximate solution by the heuristic
approach, like the CSE technique.

III. PROPOSED HEURISTIC CSE METHOD

In this section, we describe the process of CSE. Further
reduction of not only adders but also registers can be achieved
by efficiently finding the bit-patterns for horizontal and vertical
subexpression elimination. We consider here a 26th order FIR
lowpass filter as described in [6].
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Fig. 1. Proposed horizontal and vertical CSE in 26th order FIR lowpass
filter coefficients. (a) Horizontal CSE method. (b) Pattern selection by using
vertical CSE method. (c) Final horizontal and vertical CSE method.

A. Step 1: Horizontal CSE Method

In the horizontal CSE method, we must be examined all
combinations of non-zero bit patterns in a coefficient. Since
a bit pattern can only be eliminated once, we must also
detect the occurrence of the same patterns within each other.
For example, the valid non-zero bit patterns of coefficient
010n010n are summarized in Table I, where n denotes −1.
This table shows that we should select 10n as the most
frequency of non-zero bit pattern.

Table II summarizes the frequency of the valid non-zero
bit patterns in 26th order FIR lowpass filter coefficients.
In this case, patterns 10n and 100n are identified as most
frequent for the coefficients. If two patterns have the same
frequency (>1), the smallest pattern is chosen. Because, add-
er/subtracter structures with a bigger wordlength cause a larger
implementation area. Most common horizontal subexpressions
resulting from the proposed method (i.e. 10n and 100n) are
extracted from the coefficient table represented in CSD shown
in Fig. 1(a).

TABLE I
NON-ZERO BIT PATTERNS OF COEFFICIENT 010n010n.

Bit pattern Frequency
10n 2

n01, 10001, n000n, 100000n 1

TABLE II
FREQUENCY OF BIT PATTERNS IN 26TH ORDER FIR LOWPASS FILTER

COEFFICIENTS.

Bit pattern Frequency
10n 4
100n 2

101, n0n, 1001, n000n, 10000n 1

B. Step 2: Vertical CSE Method

The remaining non-zero bits are examined for optimum ver-
tical common subexpression. Pattern identification of vertical
CSE is completed through two procedures. At first, we search
for the same vertical patterns in order to reduce the number of
adders. In this example, same vertical patterns are not included
in Fig. 1(b). Secondly, to reduce the number of registers, we
search for the similar vertical patterns. Target vertical common
subexpressions are surrounded by solid (group-1) and dotted
(group-2) line shown in Fig. 1(b). Since the vertical common
subexpression increases the number of registers, extra care
must be taken to ensure that the FIR filter is constructed to
minimize the register produced by the vertical subexpression.
Fig. 2(a) explains the structure of group-1 shown in Fig. 1(b).
In Fig. 2(a), the cost function CF1 is expressed as:

CF1 = β + 2γ. (3)

On the other hand, Fig. 2(b) represents the structure of
group-2 shown in Fig. 1(b). Similarly, the cost function CF2

is as following:
CF2 = 3β + 2γ. (4)

From Equations (3) and (4) we have:

CF2 > CF1 (∵ β > 0, γ > 0). (5)

As a result, because the MCM problem is intended to reduce
the number of not only adders but registers, we should select
the vertical subexpressions with a small number of cost
function (i.e. group-1).

C. Evaluation of Implementation Cost

In order to evaluate the number of adders and registers
within the filter, we redefine Equation (2) as follows:

C = A + αD, (6)

where C is an implementation cost factor, A is the number of
adders, D is the number of registers and α is adder per register
ratio (We set the parameter α to 0.6, if we assume that the FIR
filters are fabricated in a 0.35 µm standard CMOS process).

Table III summarizes a comparison of the number of adders
and registers for the 26th order FIR lowpass filter and the
implementation cost (α = 0.6). This table shows that the
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Fig. 2. Implementation by using vertical CSE method. (a) Signal flow of
synthesizing n1 and nn. (b)Signal flow of synthesizing 1001 and 100n.

implementation cost of the proposed method is 13.8% smaller
than that of the Jang et al.’s method, and that the implemen-
tation cost of the proposed method is 7.1% (= 13.8 − 6.7)
smaller than that of the Vinod et al.’s method.

D. Evaluation of Critical Path in Multiplier Block

The speed of FIR filter is limited by critical path delay and
is determined by the logical depth in the multiplier block. In
the horizontal CSE method, the logical depth is specified by
the number of adder-steps that denotes the maximum number
of adders/subtractors allowed to pass though to produce any
multiplication. For a set of coefficients, {h0, h1, · · · , hN−1},
the low bound of adder-steps, AS, required in implementing
the multiplier block is given by

AS = max{dlog
2
kie}, (7)

where ki is the number of nonzero digits in the CSD format
of hi. In contrast, since the register is required for the
multiplier block generated through the vertical CSE method or
combining horizontal and vertical CSE method, critical path
of register is another important consideration on the logical
depth. Therefore, the logical depth in the multiplier block is
defined as the following:

LD = AS + δ × d (8)

where δ is weight and d is the number of register on the
critical path. If we assume that the structure of multiplier block
uses horizontal and vertical common subexpression blocks, its
critical path delay can be written as

Tm = max{AS×Ta+d×Td+(log
1.5 N)×Ta}, (9)

where Ta is the delay through an adder, Td(< Ta) is the
delay through a register and N is the filter order. The term
(log

1.5 N)×Ta is the delay through an adder tree structure
(see, e.g. [9] and [10]). This equation includes only arithmetic
critical path delay in the architecture. In the actual VLSI
design, RC delay due to layout parasitics needs to be taken
into consideration.

Table. IV summarizes the maximum logical depth (LD)
of multiplier block and the critical path delay (Tm) given

TABLE III
COMPARISON OF ADDERS AND REGISTERS REQUIRED TO IMPLEMENT THE

26TH ORDER FIR FILTER.

Adder Register Cost Reduction
Jang et al. [5] 32 36 53.6
Vinod et al. [6] 29 35 50.0 6.7%
Proposed 30 27 46.2 13.8%

TABLE IV
COMPARISON OF LOGICAL DEPTH AND CRITICAL PATH DELAY IN THE

MULTIPLIER BLOCK OF 26TH ORDER FIR FILTER.

LD Tm

Jang et al. [5] 3 + 2δ 11.2Ta (100%)
Vinod et al. [6] 2 + 3δ 10.3Ta (91.9%)
Proposed 2 + 1δ 10.1Ta (90.1%)

in Equation (9). Td is estimated to be Td = 0.1Ta provided
that the FIR filter is fabricated in a 0.35 µm standard CMOS
process. From this results, we found that the proposed method
offers a critical path reduction ratio of about 10% over the Jang
et al.’s method and of about 2% over the Vinod et al.’s method.

IV. IMPLEMENTATION RESULTS

In order to validate our proposed method, the examples were
synthesized top-down fashion using a CAD system; SYN-
OPSYS. The filters were fabricated using a Rohm 0.35 µm
CMOS process. This logic cell has layout parasitic informa-
tion. Hence, the following results include the RC delay due to
circuit parasitics. In the filter structure, we select a bit-parallel
implementation. In addition, carry-save adder operators are
used both in the multiplier block and the transposed section
due to their carry-free properties.

A. Example 1: 26th order FIR Lowpass filter

Table V summarizes the synthesis results and the perfor-
mance results obtained by different approaches. As you can
see, the implementation result shows that the area of the
proposed lowpass filter is 7% smaller than that of the Jang
et al.’s method, and that the area of the proposed lowpass
filter is 4.7% smaller than that of the Vinod et al.’s method.
Also, the proposed filter has the shortest critical path.

B. Example 2: 15 randomly designed FIR filters

In order to confirm whether the silicon core area and
the critical path of FIR filter are dependent on the number
of coefficients (N ) or the size of wordlength (b), we use
a randomly generated number of coefficients and size of
wordlength. The 15 randomly designed FIR filters are included
in four types of digital filters: Lowpass, Highpass, Bandpass,
and Bandstop.

Table VI compares the silicon core area for the proposed
method with those for the conventional method. This table
shows that the area of proposed mthod is an average of 6.4%
smaller than that of Jang et al.’s method, and is an average of
3.8% smaller than that of the Vinod et al.’s method.

Table VII summarizes the results in term of critical path
for 15 randomly designed FIR filters. This table shows that



TABLE V
COMPARISON OF SYNTHESIS RESULTS FOR 26TH ORDER FIR FILTER.

Core area [mm2] Power dissipation [mW/MHz] Path delay [ns]
Jang et al. [5] 0.72 (100%) 3.38 (100%) 39.8 (100%)

Vinod et al. [6] 0.70 (97.2%) 3.35 (99.1%) 36.5 (91.7%)
Proposed 0.67 (93.0%) 3.22 (95.3%) 34.8 (87.7%)

TABLE VI
COMPARISON OF AREA RESULTS ON 15 EXAMPLES.

Design Jang et al. Vinod et al. Proposed
N×b [mm2] [mm2] [mm2]

BPF, 64 0.31 (100%) 0.30 (96.7%) 0.28 (90.3%)
LPF, 99 0.47 (100%) 0.46 (99.1%) 0.45 (91.7%)

BSF, 180 0.70 (100%) 0.61 (87.1%) 0.55 (78.5%)
LPF, 208 0.72 (100%) 0.70 (97.2%) 0.67 (93.1%)
LPF, 225 0.92 (100%) 0.91 (98.9%) 0.89 (96.7%)
HPF, 261 0.78 (100%) 0.78 (100%) 0.72 (92.3%)
BSF, 288 0.90 (100%) 0.92 (102%) 0.89 (98.8%)
LPF, 300 1.15 (100%) 1.17 (102%) 1.14 (99.1%)
BSF, 336 2.02 (100%) 1.86 (92.1%) 1.84 (91.1%)
BPF, 496 1.80 (100%) 1.77 (98.3%) 1.76 (97.8%)
BPF, 605 2.50 (100%) 2.48 (99.2%) 2.45 (98.0%)
LPF, 630 1.79 (100%) 1.72 (96.0%) 1.69 (94.4%)
HPF, 640 2.86 (100%) 2.74 (95.8%) 2.69 (94.0%)
BSF, 649 2.60 (100%) 2.60 (100%) 2.57 (98.8%)
HPF, 720 3.54 (100%) 3.40 (94.4%) 3.32 (92.2%)
Avg. red. 2.6% 6.4%

the proposed method gives the shortest critical path compared
to other methods regardless of the coefficient values and the
wordlength. Moreover, we found that the critical path proposed
method is an average of 17.6% shorter than that of the Jang
et al.’s method and is an average of 3.2% shorter than that of
the Vinod et al.’s method.

From the results of Example 2 we can conclude the follow-
ing:

• The area of the proposed FIR filters has the smallest area
without dependence on the number of coefficients N and
the wordlength b.

• The proposed FIR filters has the shortest critical path
without dependence on N and b.

V. CONCLUSIONS

We have presented a new technique to be used for VLSI
design of CSD FIR filter with a small number of adders and
registers. The proposed method has been an efficient way to
find the bit-patterns with the minimum cost function in the
coefficient matrix. The usefulness of the proposed method has
been shown through the examples. The proposed method has
given the lowest implementation and the shortest critical path
compared to other methods in the examples.
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TABLE VII
COMPARISON OF CRITICAL PATH RESULTS ON 15 EXAMPLES.

Design Jang et al. Vinod et al. Proposed
N×b [ns] [ns] [ns]

BPF, 64 16.05 (100%) 15.71 (97.9%) 15.70 (97.8%)
LPF, 99 22.72 (100%) 13.97 (61.5%) 13.88 (61.1%)

BSF, 180 11.28 (100%) 11.21 (99.4%) 11.16 (98.9%)
LPF, 208 39.68 (100%) 36.55 (92.1%) 34.79 (87.7%)
LPF, 225 23.50 (100%) 22.76 (96.9%) 21.64 (92.1%)
HPF, 261 16.81 (100%) 16.19 (96.3%) 16.04 (95.4%)
BSF, 288 16.58 (100%) 15.25 (91.9%) 12.22 (73.7%)
LPF, 300 11.03 (100%) 10.71 (98.0%) 10.67 (96.7%)
BSF, 336 43.34 (100%) 28.47 (65.7%) 26.58 (61.3%)
BPF, 496 48.91 (100%) 34.77 (71.1%) 34.21 (69.9%)
BPF, 605 35.72 (100%) 21.49 (60.2%) 21.39 (59.9%)
LPF, 630 10.62 (100%) 10.60 (99.8%) 10.18 (95.6%)
HPF, 640 34.17 (100%) 33.49 (98.0%) 31.40 (91.9%)
BSF, 649 21.71 (100%) 21.37 (98.4%) 21.16 (97.5%)
HPF, 720 41.26 (100%) 24.62 (59.7%) 24.27 (58.8%)
Avg. red. 14.4% 17.6%
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